Sains Malaysiana 51(9)(2022): 2857-2871

http://doi.org/10.17576/jsm-2022-5109-10

 

Metal and Metal Oxide Nanoparticles from Mimusops elengi Linn. Extract: Green Synthesis, Antioxidant Activity, and Cytotoxicity

(Nanozarah Logam dan Oksida Logam daripada Mimusops elengi Linn. Ekstrak: Sintesis Hijau, Aktiviti Antioksidan dan Kesitotoksikan)

 

SELLY ARVINDA RAKHMAN, TANYARATH UTAIPAN, CHAROEN PAKHATHIRATHIEN & WEERAYA KHUMMUENG*

 

Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand

 

Diserahkan: 16 Disember 2021/Diterima: 30 Mac 2022

 

Abstract

In this study, both silver (Ag) and zinc oxide (ZnO) nanoparticles are green synthesized using a water extract of the Mimusops elengi Linn. leaf. The methods are simple, inexpensive, nontoxic, and eco-friendly. The AgNPs and ZnONPs are formed using phytochemical substances in M. elengi leaf extract at room temperature. The phenolics and flavonoids in the leaf extract is the key compounds that act as the metal-reducing agents. The effective parameters of the green synthesis (the metal concentration, leaf extract concentration, pH, temperature, and reaction time) are evaluated. The formation of the metal and metal oxide nanoparticles (NPs) are confirmed through colour change visuals, ultraviolet–visible (UV-vis) spectroscopy (UV-vis), and Fourier transform infrared (FTIR) spectroscopy. The morphological and crystalline characterizations of the NPs are established using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The TEM results indicated that the AgNPs are predominantly spherical in shape with an average particle size of 22.12 nm. The ZnONPs have mostly rod-like morphology with an average size of 28.44 nm. The antioxidant activity and cytotoxicity of the synthesized NPs against colon cancer cells (Caco-2 cells) are evaluated; the obtained NPs exhibited good free radical scavenging activity through DPPH, ABTS, and FRAP assays. The cytotoxicity results demonstrated that only the 2,000-ppm extract had any potential against the Caco-2 cells; both the AgNPs and ZnONPs had no effect on Caco-2 cells. However, regarding human health, metal NPs are safe to use and are useful in the other applications.

 

Keywords: Antioxidant; cytotoxicity; green synthesis; Mimusops elengi Linn; nanoparticles

 

Abstrak

Dalam kajian ini, kedua-dua nanozarah perak (Ag) dan zink oksida (ZnO) disintesis secara hijau menggunakan ekstrak air daun Mimusops elengi Linn. Kaedahnya mudah, murah, tidak toksik dan mesra alam. AgNPs dan ZnONPs dibentuk menggunakan bahan fitokimia dalam ekstrak daun M. elengi pada suhu bilik. Fenol dan flavonoid dalam ekstrak daun adalah sebatian utama yang bertindak sebagai agen pengurangan logam. Parameter berkesan sintesis hijau (kepekatan logam, kepekatan ekstrak daun, pH, suhu, dan masa tindak balas) dinilai. Pembentukan nanozarah logam dan logam oksida (NPs) disahkan melalui visual perubahan warna, spektroskopi tampak ultraungu (UV-vis) (UV-vis) dan spektroskopi inframerah transformasi Fourier (FTIR). Pencirian morfologi dan hablur NP menggunakan mikroskop elektron penghantaran (TEM) dan pembelauan sinar-X (XRD). Keputusan TEM menunjukkan bahawa AgNPs kebanyakannya berbentuk sfera dengan saiz zarah purata 22.12 nm. ZnONPs kebanyakannya mempunyai morfologi seperti batang dengan saiz purata 28.44 nm. Aktiviti antioksidan dan kesitotoksikan NP yang disintesis terhadap sel kanser kolon (sel Caco-2) dinilai; NP yang diperoleh mempamerkan aktiviti penghapusan radikal bebas yang baik melalui ujian DPPH, ABTS dan FRAP. Keputusan kesitotoksikan menunjukkan bahawa hanya ekstrak 2,000-ppm mempunyai potensi terhadap sel Caco-2; kedua-dua AgNP dan ZnONP tidak mempunyai kesan ke atas sel Caco-2. Walau bagaimanapun, mengenai kesihatan manusia, NP logam selamat digunakan dan berguna dalam aplikasi lain.

 

Kata kunci: Antioksidan; kesitotoksikan; Mimusops elengi Linn; nanozarah; sintesis hijau

 

RUJUKAN

Abdelhakim, H.K., El-Sayed, E.R. & Rashidi, F.B. 2020. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. Journal of Applied Microbiology 128(6): 1634-1646.  

Ahmed, B., Hashmi, A., Khan, M.S. & Musarrat, J. 2018. ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Advanced Powder Technology 29(7): 1601-1616.

Ahmed, S., Chaudhry, S.A. & Ikram, S. 2017. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology 166: 272-284.

Aini, B.N., Siddiquee, S., Ampon, K., Rodrigues, K.F. & Suryani, S. 2015. Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane. Sensing and Bio-Sensing Research 4: 46-56.

Alamdari, S., Ghamsari, M.S., Lee, C., Han, W., Park, H.H., Tafreshi, M.J.,  Afarideh, H. &  Ara, M.H.M. 2020. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences 10(10): 3620.

Aref, M.S. & Salem, S.S. 2020. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology  27: 101689.

Baliga, M.S., Pai, R.J., Bhat, H.P., Palatty, P.L. & Boloor, R. 2011. Chemistry and medicinal properties of the Bakul (Mimusops elengi Linn): A review. Food Research International 44(7): 1823-1829.

Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D.M. & Crespo, J.S. 2020. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15: 100223.

Basnet, P., Chanu, T.I., Samanta, D. & Chatterjee, S. 2018. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology 183: 201-221.

Benzie, I.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Analytical Biochemistry 239(1): 70-76.

Bharadwaj, K.K., Rabha, B., Pati, S., Choudhury, B.K., Sarkar, T., Gogoi, S.K., Kakati, N., Baishya, D., Kari, Z.A. & Edinur, H.A. 2021. Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 11(8): 1999.

Ceci, C., Lacal, P.M., Tentori, L., De Martino, M.G., Miano, R. & Graziani, G. 2018. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10(11): 1756.

Chandra, H., Kumari, P., Bontempi, E. & Yadav, S. 2020. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology 24: 101518.

Dubey, R.S., Rajesh, Y.B.R.D. & More, M.A. 2015. Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Materials Today: Proceedings 2(4-5): 3575-3579.

Gami, B., Pathak, S. & Parabia, M. 2012. Ethnobotanical, phytochemical and pharmacological review of Mimusops elengi Linn. Asian Pacific Journal of Tropical Biomedicine 2(9): 743-748.

Ganesh, G., Abhishek, T., Saurabh, M. & Sarada, N.C. 2014. Cytotoxic and apoptosis induction potential of Mimusops elengi L. in human cervical cancer (SiHa) cell line. Journal of King Saud University - Science 26(4): 333-337.

Ghramh, H.A., Ibrahim, E.H. & Kilany, M. 2020. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Science & Nutrition 8(1): 445-455.

Gur, T., Meydan, I., Seckin, H., Bekmezci, M. & Sen, F. 2022. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research 204: 111897.

Iravani, S., Korbekandi, H., Mirmohammadi, S.V. & Zolfaghari, B. 2014. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences9(6): 385-406.

Istiqola, A. & Syafiuddin, A. 2020. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. Journal of the Chinese Chemical Society 67(11): 1942-1956.

Kar, B., Kumar, R.S., Bala, A., Dolai, N., Mazumder, U.K. & Haldar, P.K. 2012. Evaluation of antitumor activity of Mimusops elengi leaves on Ehrlich's ascites carcinoma-treated mice. Journal of Dietary Supplements 9(3): 166-177.

Khan, I., Saeed, K. & Khan, I. 219. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12(7): 908-931.

Kokila, T., Ramesh, P.S. & Geetha, D. 2016. Biosynthesis of AgNPs using Carica papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicology and Environmental Safety 134(2): 467-473.  

Kumar, H.A.K., Mandal, B.K., Kumar, K.M., Maddinedi, S.B., Kumar, T.S., Madhiyazhagan, P. & Ghosh, A.R. 2014. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 130: 13-18.

Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P. &  Franklin, G. 2018. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6): 940.

Miethling-Graff, R., Rumpker, R., Richter, M., Verano-Braga, T., Kjeldsen, F., Brewer, J., Hoyland, J.,  Rubahn, H-G. & Erdmann, H. 2014. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicology in Vitro 28(7): 1280-1289.

Mondéjar-López, M., López-Jiménez, A.J., Abad-Jordá, M., Rubio-Moraga, A., Ahrazem, O., Gómez-Gómez, L. &  Niza, E. 2021. Biogenic silver nanoparticles from Iris tuberosa as potential preservative in cosmetic products. Molecules 26(15): 4696. 

Moussi, K., Nayak, B., Perkins, L.B., Dahmoune, F., Madani, K. & Chibane, M. 2015. HPLC-DAD profile of phenolic compounds and antioxidant activity of leaves extract of Rhamnus alaternus L. Industrial Crops and Products 74: 858-866.

Owaid, M.N. 2019. Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environmental Nanotechnology, Monitoring & Management 12: 100256.

Paladini, F. & Pollini, M. 2019. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials 12(16): 2540. 

Poor, M.H.S., Khatami, M., Azizi, H. & Abazari, Y. 2017. Cytotoxic activity of biosynthesized Ag nanoparticles by Plantago major towards a human breast cancer cell line. Rendiconti Lincei-Scienze Fisiche E Naturali 28(4): 693-699.

Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S. & Saravanan, M. 2013. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces 108: 255-259.

Rad, S.S., Sani, A.M. & Mohseni, S. 2019. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microbial Pathogenesis 131: 239-245.

Raja, S., Ramesh, V. & Thivaharan, V. 2017. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry 10(2): 253-261.

Ramesh, A.V., Devi, D.R., Battu, G. & Basavaiah, K. 2018. A facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. South African Journal of Chemical Engineering 26: 25-34.

Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S.A.A., Tripathy, M. &  Paliwal, N. 2019. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics 15: 102565.

Sharmila, G., Thirumarimurugan, M. & Muthukumaran, C. 2019. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchemical Journal 145: 578-587.

Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P. & Kumar, P. 2018. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology 16(84): 1-24.

Singleton, V.L., Orthofer, R. & Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152-178.

Wang, R., Ma, L., Weng, D., Yao, J., Liu, X. & Jin, F. 2016. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncology Reports 35(5): 3075-3083.

Xu, J. & Mao, W. 2016. Overview of research and development for anticancer drugs. Journal of Cancer Therapy 7(10): 762-772.   

Zhang, X.F., Shen, W. & Gurunathan, S. 2016. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. International Journal of Molecular Sciences 17(10): 1603.

 

*Pengarang untuk surat-menyurat; email: weeraya.k@psu.ac.th

 

   

 

   

sebelumnya