Sains
Malaysiana 51(9)(2022):
2857-2871
http://doi.org/10.17576/jsm-2022-5109-10
Metal and Metal Oxide Nanoparticles from Mimusops
elengi Linn. Extract: Green Synthesis, Antioxidant Activity, and
Cytotoxicity
(Nanozarah Logam dan Oksida Logam daripada Mimusops
elengi Linn. Ekstrak: Sintesis Hijau, Aktiviti Antioksidan dan
Kesitotoksikan)
SELLY ARVINDA RAKHMAN, TANYARATH UTAIPAN, CHAROEN
PAKHATHIRATHIEN & WEERAYA KHUMMUENG*
Department of Science, Faculty of Science and Technology,
Prince of Songkla University, Pattani, 94000, Thailand
Diserahkan: 16 Disember
2021/Diterima: 30 Mac 2022
Abstract
In
this study, both silver (Ag) and zinc oxide (ZnO) nanoparticles are green
synthesized using a water extract of the Mimusops elengi Linn. leaf. The methods are simple,
inexpensive, nontoxic, and eco-friendly. The AgNPs and ZnONPs are formed using
phytochemical substances in M. elengi leaf extract at room
temperature. The phenolics and flavonoids in the leaf extract is the key
compounds that act as the metal-reducing agents. The effective parameters of
the green synthesis (the metal concentration, leaf extract concentration, pH,
temperature, and reaction time) are evaluated. The formation of the metal and
metal oxide nanoparticles (NPs) are confirmed through colour change visuals,
ultraviolet–visible (UV-vis) spectroscopy (UV-vis), and Fourier transform
infrared (FTIR) spectroscopy. The morphological and crystalline
characterizations of the NPs are established using transmission electron microscopy
(TEM) and X-ray diffraction (XRD). The TEM results indicated that the AgNPs are
predominantly spherical in shape with an average particle size of
22.12 nm. The ZnONPs have mostly rod-like morphology with an average size
of 28.44 nm. The antioxidant activity and cytotoxicity of the synthesized
NPs against colon cancer cells (Caco-2 cells) are evaluated; the obtained NPs
exhibited good free radical scavenging activity through DPPH, ABTS, and FRAP
assays. The cytotoxicity results demonstrated that only the 2,000-ppm extract
had any potential against the Caco-2 cells; both the AgNPs and ZnONPs had no
effect on Caco-2 cells. However, regarding human health, metal NPs are safe to
use and are useful in the other applications.
Keywords: Antioxidant; cytotoxicity; green synthesis; Mimusops elengi Linn; nanoparticles
Abstrak
Dalam kajian ini, kedua-dua
nanozarah perak (Ag) dan zink oksida (ZnO) disintesis secara hijau menggunakan
ekstrak air daun Mimusops elengi Linn. Kaedahnya mudah, murah, tidak
toksik dan mesra alam. AgNPs dan ZnONPs dibentuk menggunakan bahan fitokimia
dalam ekstrak daun M. elengi pada suhu bilik. Fenol dan flavonoid dalam
ekstrak daun adalah sebatian utama yang bertindak sebagai agen pengurangan
logam. Parameter berkesan sintesis hijau (kepekatan logam, kepekatan ekstrak
daun, pH, suhu, dan masa tindak balas) dinilai. Pembentukan nanozarah logam dan
logam oksida (NPs) disahkan melalui visual perubahan warna, spektroskopi tampak
ultraungu (UV-vis) (UV-vis) dan spektroskopi inframerah transformasi Fourier
(FTIR). Pencirian morfologi dan hablur NP menggunakan mikroskop elektron
penghantaran (TEM) dan pembelauan sinar-X (XRD). Keputusan TEM menunjukkan
bahawa AgNPs kebanyakannya berbentuk sfera dengan saiz zarah purata 22.12 nm.
ZnONPs kebanyakannya mempunyai morfologi seperti batang dengan saiz purata
28.44 nm. Aktiviti antioksidan dan kesitotoksikan NP yang disintesis terhadap
sel kanser kolon (sel Caco-2) dinilai; NP yang diperoleh mempamerkan aktiviti
penghapusan radikal bebas yang baik melalui ujian DPPH, ABTS dan FRAP.
Keputusan kesitotoksikan menunjukkan bahawa hanya ekstrak 2,000-ppm mempunyai
potensi terhadap sel Caco-2; kedua-dua AgNP dan ZnONP tidak mempunyai kesan ke
atas sel Caco-2. Walau bagaimanapun, mengenai kesihatan manusia, NP logam
selamat digunakan dan berguna dalam aplikasi lain.
Kata kunci: Antioksidan;
kesitotoksikan; Mimusops elengi Linn; nanozarah; sintesis hijau
RUJUKAN
Abdelhakim, H.K., El-Sayed, E.R. & Rashidi, F.B. 2020.
Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer,
antioxidant and photocatalytic activities by the endophytic Alternaria
tenuissima. Journal of Applied
Microbiology 128(6): 1634-1646.
Ahmed, B., Hashmi, A., Khan, M.S.
& Musarrat,
J. 2018. ROS mediated destruction of cell membrane,
growth and biofilms of human bacterial pathogens by stable metallic AgNPs
functionalized from bell pepper extract and quercetin. Advanced Powder Technology 29(7):
1601-1616.
Ahmed, S., Chaudhry, S.A. & Ikram,
S. 2017. A review on biogenic synthesis of ZnO nanoparticles using plant
extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology 166: 272-284.
Aini, B.N., Siddiquee, S., Ampon, K., Rodrigues, K.F. & Suryani,
S. 2015. Development of glucose biosensor based on ZnO nanoparticles film and
glucose oxidase-immobilized eggshell membrane. Sensing and Bio-Sensing Research 4: 46-56.
Alamdari, S., Ghamsari, M.S., Lee, C.,
Han, W., Park, H.H., Tafreshi, M.J., Afarideh, H. & Ara, M.H.M. 2020. Preparation and characterization of zinc oxide
nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences 10(10): 3620.
Aref, M.S. & Salem, S.S. 2020. Bio-callus synthesis of
silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology 27:
101689.
Baliga, M.S., Pai, R.J., Bhat, H.P.,
Palatty, P.L. & Boloor, R. 2011. Chemistry and medicinal properties of the
Bakul (Mimusops elengi Linn): A review. Food Research International 44(7): 1823-1829.
Bandeira,
M., Giovanela,
M., Roesch-Ely,
M., Devine,
D.M. & Crespo, J.S. 2020. Green synthesis of zinc oxide nanoparticles: A review
of the synthesis methodology and mechanism of formation. Sustainable
Chemistry and Pharmacy 15: 100223.
Basnet, P., Chanu, T.I., Samanta, D. & Chatterjee, S. 2018. A review on bio-synthesized zinc oxide nanoparticles using plant
extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology 183: 201-221.
Benzie, I.F. & Strain, J.J. 1996. The ferric
reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP
assay. Analytical Biochemistry 239(1): 70-76.
Bharadwaj, K.K., Rabha, B., Pati, S., Choudhury,
B.K., Sarkar, T., Gogoi, S.K., Kakati, N., Baishya, D., Kari, Z.A. &
Edinur, H.A. 2021. Green synthesis of silver nanoparticles using Diospyros
malabarica fruit extract and assessments of their antimicrobial,
anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 11(8):
1999.
Ceci, C., Lacal, P.M., Tentori, L., De Martino,
M.G., Miano, R. & Graziani, G. 2018. Experimental evidence of the antitumor,
antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10(11): 1756.
Chandra, H., Kumari, P., Bontempi, E.
& Yadav, S. 2020. Medicinal plants: Treasure trove for green synthesis of metallic
nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology 24: 101518.
Dubey,
R.S., Rajesh,
Y.B.R.D. & More,
M.A. 2015. Synthesis and characterization of SiO2 nanoparticles
via sol-gel method for industrial applications. Materials Today: Proceedings 2(4-5): 3575-3579.
Gami, B., Pathak, S. & Parabia, M.
2012. Ethnobotanical, phytochemical and pharmacological review of Mimusops
elengi Linn. Asian Pacific Journal of Tropical Biomedicine 2(9): 743-748.
Ganesh, G., Abhishek, T., Saurabh, M.
& Sarada, N.C. 2014. Cytotoxic and apoptosis induction potential of Mimusops
elengi L. in human cervical cancer (SiHa) cell line. Journal of King Saud University - Science 26(4): 333-337.
Ghramh, H.A., Ibrahim, E.H. & Kilany, M. 2020.
Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles
production by Sidr honey from three different sources. Food
Science & Nutrition 8(1): 445-455.
Gur, T., Meydan, I., Seckin, H., Bekmezci, M. & Sen, F. 2022.
Green synthesis, characterization and bioactivity of biogenic zinc oxide
nanoparticles. Environmental Research 204: 111897.
Iravani, S., Korbekandi,
H., Mirmohammadi, S.V. & Zolfaghari, B. 2014. Synthesis of silver
nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical
Sciences9(6): 385-406.
Istiqola, A. & Syafiuddin, A. 2020. A review of
silver nanoparticles in food packaging technologies: Regulation, methods,
properties, migration, and future challenges. Journal of the Chinese
Chemical Society 67(11): 1942-1956.
Kar, B., Kumar, R.S., Bala, A., Dolai, N., Mazumder,
U.K. & Haldar, P.K. 2012. Evaluation of antitumor activity of Mimusops
elengi leaves on Ehrlich's ascites carcinoma-treated mice. Journal
of Dietary Supplements 9(3): 166-177.
Khan, I., Saeed,
K. &
Khan, I. 219. Nanoparticles:
Properties, applications and toxicities. Arabian Journal of Chemistry 12(7): 908-931.
Kokila, T., Ramesh, P.S. & Geetha, D. 2016. Biosynthesis of AgNPs
using Carica papaya peel extract and evaluation of its antioxidant and
antimicrobial activities. Ecotoxicology and
Environmental Safety 134(2): 467-473.
Kumar, H.A.K., Mandal, B.K., Kumar, K.M., Maddinedi, S.B., Kumar, T.S.,
Madhiyazhagan, P. & Ghosh, A.R. 2014. Antimicrobial and
antioxidant activities of Mimusops elengi seed extract
mediated isotropic silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy 130: 13-18.
Marslin, G., Siram, K., Maqbool,
Q., Selvakesavan,
R.K., Kruszka,
D., Kachlicki,
P. & Franklin, G. 2018. Secondary
metabolites in the green synthesis of metallic nanoparticles. Materials 11(6): 940.
Miethling-Graff, R., Rumpker, R.,
Richter, M., Verano-Braga, T., Kjeldsen, F., Brewer, J., Hoyland, J., Rubahn, H-G. & Erdmann, H. 2014. Exposure to silver
nanoparticles induces size- and dose-dependent oxidative stress and
cytotoxicity in human colon carcinoma cells. Toxicology
in Vitro 28(7): 1280-1289.
Mondéjar-López, M., López-Jiménez, A.J.,
Abad-Jordá, M., Rubio-Moraga, A., Ahrazem, O., Gómez-Gómez, L. & Niza, E. 2021. Biogenic silver nanoparticles
from Iris tuberosa as potential preservative in cosmetic
products. Molecules 26(15): 4696.
Moussi, K., Nayak, B., Perkins, L.B.,
Dahmoune, F., Madani, K. & Chibane, M. 2015. HPLC-DAD profile of
phenolic compounds and antioxidant activity of leaves extract of Rhamnus
alaternus L. Industrial Crops and Products 74: 858-866.
Owaid, M.N. 2019. Green synthesis of silver
nanoparticles by Pleurotus (oyster mushroom) and their
bioactivity: Review. Environmental Nanotechnology, Monitoring & Management 12: 100256.
Paladini, F. & Pollini, M. 2019. Antimicrobial silver nanoparticles for wound healing application:
Progress and future trends. Materials 12(16):
2540.
Poor, M.H.S., Khatami, M., Azizi, H. & Abazari,
Y. 2017. Cytotoxic
activity of biosynthesized Ag nanoparticles by Plantago major towards
a human breast cancer cell line. Rendiconti Lincei-Scienze Fisiche E
Naturali 28(4): 693-699.
Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj,
S. & Saravanan, M. 2013. Green synthesis of silver nanoparticles from leaf extract
of Mimusops elengi, Linn. for enhanced antibacterial activity
against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces 108:
255-259.
Rad, S.S., Sani, A.M. & Mohseni,
S. 2019. Biosynthesis, characterization and antimicrobial activities of zinc
oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microbial Pathogenesis 131: 239-245.
Raja, S.,
Ramesh, V. & Thivaharan, V. 2017. Green biosynthesis
of silver nanoparticles using Calliandra haematocephala leaf
extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry 10(2): 253-261.
Ramesh, A.V., Devi, D.R., Battu,
G. & Basavaiah, K. 2018. A facile plant
mediated synthesis of silver nanoparticles using an aqueous leaf extract
of Ficus hispida Linn. f. for catalytic, antioxidant and
antibacterial applications. South African Journal of Chemical Engineering 26: 25-34.
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S.A.A., Tripathy, M. & Paliwal, N. 2019. Green synthesis,
characterization, antibacterial, antioxidant and photocatalytic activity
of Parkia speciosa leaves extract mediated silver
nanoparticles. Results
in Physics 15: 102565.
Sharmila, G., Thirumarimurugan, M. & Muthukumaran, C. 2019. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant,
bactericidal and anticancer activities. Microchemical Journal 145: 578-587.
Singh, J., Dutta, T., Kim, K.H., Rawat,
M., Samddar, P. & Kumar, P. 2018. Green synthesis of metals and their oxide
nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology 16(84): 1-24.
Singleton, V.L., Orthofer, R. & Lamuela-Raventós, R.M. 1999.
Analysis of total phenols and other oxidation substrates and antioxidants by
means of Folin-Ciocalteu reagent. Methods
in Enzymology 299: 152-178.
Wang, R., Ma, L., Weng, D., Yao, J.,
Liu, X. & Jin, F. 2016. Gallic acid induces apoptosis and enhances the anticancer effects
of cisplatin in human small cell lung cancer H446 cell line via the
ROS-dependent mitochondrial apoptotic pathway. Oncology Reports 35(5): 3075-3083.
Xu, J. & Mao, W. 2016. Overview of
research and development for anticancer drugs. Journal of Cancer Therapy 7(10): 762-772.
Zhang, X.F., Shen, W. & Gurunathan, S. 2016.
Silver nanoparticle-mediated cellular responses in various cell lines: An in
vitro model. International Journal of Molecular Sciences 17(10):
1603.
*Pengarang untuk surat-menyurat; email:
weeraya.k@psu.ac.th
|