Sains Malaysiana 51(9)(2022): 2999-3008

http://doi.org/10.17576/jsm-2022-5109-20

 

Effect of Oral Environmental pH on the Dynamic Characterization of Bioactive Restorative Materials

(Kesan pH Persekitaran Oral terhadap Pencirian Dinamik Bahan Pemulihan Bioaktif)

 

JOSHUA ONG EE XIN1, ADRIAN YAP U-JIN2, AZWATEE ABDUL AZIZ3 & NOOR AZLIN YAHYA3,*

 

1Centre for Restorative Dentistry Studies, Faculty of Dentistry, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia

2Department of Dentistry, Ng Teng Fong General Hospital, National University Health System, Singapore

3Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

Diserahkan: 6 Februari 2022/Diterima: 23 April 2022

 

Abstract

The objective of this study was to investigate the effects of oral environmental pH on the viscoelastic properties of bioactive restorative materials (BRMs) by using dynamic mechanical analysis. Stainless steel molds were used to fabricate 40 beam-shaped specimens (12 × 2 × 2 mm) for each material. The specimens were finished, measured, randomly divided into four groups (n = 10), and immersed in aqueous solutions of pH 3.0, 5.0, 6.8, and 10.0 at 37 °C for seven days. The specimens were then subjected to dynamic mechanical analysis with a 5 N load and frequency range of 0.1-10.0 Hz. Data were analyzed using one-way ANOVA/Dunnet T3’s test (α = 0.05). Mean elastic modulus spanned from 2.68 ± 0.17 to 6.49 ± 0.71 GPa, while viscous modulus ranged from 0.43 ± 0.03 to 0.62 ± 0.12 GPa. Loss tangent differed from 77.30 ± 4.90 to 164.50 ± 9.12. Significant differences among pH were discerned for (i) Elastic modulus: Cention N - pH 3.0, 5.0, 10.0 > 6.8; Activa Bioactive - pH 3.0, 6.8, 10.0 > 5.0, (ii) Viscous modulus: Cention N - pH 3.0, 5.0, 10.0 > 6.8, and (iii) Loss tangent: Activa Bioactive - pH 5.0 > 3.0, 6.8, 10.0. Significant differences in viscoelastic properties were noted among the BRMs with Activa Bioactive presenting the lowest elastic modulus for all pH. Immersion of all materials in pH 6.8 yielded the highest elastic modulus, except for Activa Bioactive. The effects of environmental pH on viscoelastic properties of BRMs are material-dependent.

 

Keywords: Bioactive; dynamic mechanical analysis; pH; viscoelastic

 

Abstrak

Objektif kajian ini adalah untuk mengenal pasti kesan pH persekitaran mulut pada sifat viskoelastik bahan pemulihan bioaktif (BRM) dengan menggunakan analisis mekanikal dinamik. Acuan keluli tahan karat digunakan untuk menghasilkan 40 spesimen ujian berukuran 12 × 2 × 2 mm bagi setiap bahan. Kesemua spesimen tersebut kemudiannya dirapikan, diukur dan dibahagikan secara rawak kepada empat kumpulan. Spesimen daripada setiap kumpulan (n =10) direndam di dalam larutan akueus yang mempunyai pH 3.0, 5.0, 6.8 dan 10.0 pada suhu 37 °C, selama tujuh hari. Spesimen kemudiannya tertakluk kepada analisis mekanikal dinamik dengan beban 5 N dan julat frekuensi di antara 0.1-10.0 Hz. Data dianalisis menggunakan ujian ANOVA/Dunnet T3 sehala (α = 0.05). Purata modulus elastik mempunyai julat antara (2.68 ± 0.17 GPa) dan (6.49 ± 0.71 GPa), manakala purata modulus likat adalah antara (0.43 ± 0.03 GPa) dan (0.62 ± 0.12 GPa). Purata kehilangan tangen pula adalah antara (77.30 ± 4.9) dan (164.50 ± 9.12). Keputusan analisis dari segi pH adalah seperti berikut: (i) Modulus elastik: Cention N - pH 3.0, 5.0, 10.0 > 6.8; Activa Bioactive - pH 3.0, 6.8, 10.0 > 5.0, (ii) Modulus likat: Cention N - pH 3.0, 5.0, 10.0 > 6.8 dan (iii) Kehilangan tangen: Activa Bioactive – pH 5.0 > 3.0, 6.8, 10.0. Perbezaan ketara dari segi sifat viskoelastik antara pelbagai bahan telah dapat dikesan dan modulus elastik bagi bahan Activa Bioactive didapati paling rendah dalam semua pH rendaman. Semua bahan yang direndam di dalam pH 6.8 menghasilkan modulus elastik tertinggi, kecuali Activa Bioactive. Kesimpulannya, kesan pH persekitaran ke atas sifat viskoelastik BRM adalah bergantung kepada bahan-bahan ujian.

 

Kata kunci: Analisis mekanikal dinamik; bioaktif; pH; sifat viskoelastik

 

RUJUKAN

Aframian, D.J., Ofir, M. & Benoliel, R. 2010. Comparison of oral mucosal pH values in bulimia nervosa, GERD, BMS patients and healthy population. Oral Diseases 16(8): 807-811.

Alrahlah, A. 2018. Diametral tensile strength, flexural strength, and surface microhardness of bioactive bulk fill restorative. Journal of Contemporary Dental Practice 19(1): 13-19.

Attin, T., Becker, K., Wiegand, A., Tauböck, A.T.T. & Wegehaupt, F.J. 2012. Impact of laminar flow velocity of different acids on enamel calcium loss. Clinical Oral Investigations 17(2): 595-600.

Attin, T., Florian, J. & Wegehaupt, F.J. 2014. Impact of erosive conditions on tooth-colored restorative materials. Dental Materials 30(1): 43-49.

Bagheri, R., Tyas, M.J. & Burrow, M.F. 2007. Subsurface degradation of resin-based composites. Dental Materials 23(8): 944-951.

Boparai, K.S. & Singh, R. 2018. Thermoplastic composites for fused deposition modeling filament: Challenges and applications. Encyclopedia of Materials: Composites 1: 774-784.

Chan, D.C., Chung, A.K. & Paranjpe, A. 2018. Antibacterial and bioactive dental restorative materials: Do they really work? American Journal of Dentistry 31(Sp Is B): 3B-5B.

Chenicheri, S.R.U., Ramachandran, R., Thomas, V. & Wood, A. 2017. Insight into oral biofilm: Primary, secondary and residual caries and phyto-challenged solutions. The Open Dentistry Journal 11: 312-333.

Cilli, R., Pereira, J.C. & Prakki, A. 2012. Properties of dental resins submitted to pH catalysed hydrolysis. Journal of Dentistry 40(12): 1144-1150.

Demarco, F.F., Correa, M.B., Cenci, M.S., Moraes, R.R. & Opdam, N.J. 2012. Longevity of posterior composite restorations: not only a matter of materials. Dental Materials 28(1): 87-101.

Ferracane, J.L. 2005. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dental Materials 21(1): 36-42.

François, P., Remadi, A., Goff, S.L., Abdel-Gawad, S., Attal, J. & Dursun, E. 2021. Flexural properties and dentin adhesion in recently developed self-adhesive bulk-fill materials. Journal of Oral Science 63(2): 139-144.

Friedrich, J.E. 2001. Titratable activity of acid tastants. In Current Protocol in Food Analytical Chemistry, edited by Wrolstad, R.E. New York: John Wiley and Sons Inc. doi/10.1002/0471142913.fag0201s00

Fuss, M., Wicht, M.J., Attin, T., Derman, S.H.M. & Noack, M.J. 2017. Protective buffering capacity of restorative dental materials in vitro. Journal of Adhesive Dentistry 19(2): 177-183.

Gal, J.Y., Fovet, Y. & Adib-Yadzi, M. 2001. About a synthetic saliva for in vitro studies. Talanta 53(6): 1103-1111.

Jokstad, A., Bayne, S., Blunck, U., Tyas, M. & Wilson, N. 2001. Quality of dental restorations. FDI Commission Project 2-95. International Dental Journal 51(3): 117-158.

Marghalani, H.Y. 2010. Post-irradiation vickers microhardness development of novel resin composites. Materials Research 13(1): 81-87.

Mayanagi, G., Igarashi, K., Washio, J., Nakajo, K., Domon-Tawaraya, H. & Takahashi, N. 2011. Evaluation of pH at the bacteria-dental cement interface. Journal of Dental Research 90(12): 1446-1450.

Mesquita, R.V., Axmann, D. & Geis-Gerstorfer, J. 2006. Dynamic visco-elastic properties of dental composite resins. Dental Materials 22(3): 258-267.

Mjör, I.A., Jokstad, A. & Qvist, V. 1990. Longevity of posterior restorations. International Dental Journal 40(1): 11-17.

Moon, J.D., Seon, E.M., Son, S.A., Jung, K.H., Kwon, Y.H. & Park, J.K. 2015. Effect of immersion into solutions at various pH on the color stability of composite resins with different shades. Restorative Dentistry & Endodontics 40(4): 270-276.

Nedeljkovic, I., Munck, J.D., Vanloy, A., Declerck, D., Lambrechts, P., Peumans, M., Teughels, W., Van Meerbeek, B. & Landuyt, K.L.V. 2020. Secondary caries: Prevalence, characteristics and approach. Clinical Oral Investigations 24(2): 683-691.

Ong, J.E.X., Yap, A.U., Hong, J.Y., Eweis, A.H. & Yahya, N.A. 2018. Viscoelastic properties of contemporary bulk-fill restoratives: A dynamic-mechanical analysis. Operative Dentistry 43(3): 307-314.

Po, J.M., Kieser, J.A., Gallo, L.M., T´esenyi, A.J., Herbison, P. & Farella, M. 2011. Time-frequency analysis of chewing activity in the natural environment. Journal of Dental Research 90(10): 1206-1210.

Prakki, A., Cilli, R., Mondelli, R., Kalachandra, S. & Pereira, J.C. 2004. Influence of pH environment on polymer based dental material properties. Journal of Dentistry 33(2): 91-98.

Sideridou, I.D. & Karabela, M.M. 2011. Sorption of water, ethanol or ethanol/water solutions by light-cured dental dimethacrylate resins. Dental Materials 27(10): 1003-1010.

Sujith, R., Yadav, T.G., Pitalia, D., Babaji, P., Apoorva, K. & Sharma, A. 2020. Comparative evaluation of mechanical and microleakage properties of cention-n, composite, and glass ionomer cement restorative materials. Journal of Contemporary Dental Practice 21(6): 691-695.

Syed, J. & Chadwick, R. 2009. A laboratory investigation of consumer addition of UHT milk to lessen the erosive potential of fizzy drinks. British Dental Journal 206(3): E6.

Valinoti, A.C., Neves, B.G., da Silva, E.M. & Maia, L.C. 2008. Surface degradation of composite resins by acidic medicines and pH-cycling. Journal of Applied Oral Science 16(4): 257-265.

Vouvoudi, E.C. & Sideridou, I.D. 2012. Dynamic mechanical properties of dental nanofilled light-cured resin composites: Effect of food-simulating liquids. Journal of Mechanical Behaviour Biomedical Materials 10(1): 87-96.

Wang, L., D'Alpino, P.H., Lopes, L.G. & Pereira, J.C. 2003. Mechanical properties of dental restorative materials: Relative contribution of laboratory tests. Journal of Applied Oral Science 11(3): 162-167.

Wang, X.Y. & Yap, A.U. 2009. Effects of environmental calcium and phosphate on wear and strength of glass ionomers exposed to acidic conditions. Journal of Biomedical Material Research Part B: Applied Biomaterials 88(2): 458-464.

Yap, A.U., Choo, H.S., Choo, H.Y. & Yahya, N.A. 2021a. Flexural properties of bioactive restoratives in cariogenic environment. Operative Dentistry 46(4): 448-456.

Yap, A.U., Ong, J.E. & Yahya, N.A. 2021b. Effect of resin coating on highly viscous glass ionomer cements: A dynamic analysis. Journal of Mechanical Behaviour of Biomedical Materials 113: 104120.

Yap, A.U., Eweis, A.H. & Yahya, N.A. 2020. Dynamic and static flexural appraisal of resin-based composites: Comparison of the ISO and mini-flexural tests. Operative Dentistry 43(5): E223-E231.

Yap, A.U., Lim, L.Y., Yang, T.Y., Ali, A. & Chung, S.M. 2005. Influence of dietary solvents on strength of nanofill and ormocer composites. Operative Dentistry 30(1): 129-133.

Yilmaz, E.Ç. & Sadeler, R. 2018. Effect of artificial aging environment and time on mechanical properties of composite materials. Journal of Dental Research and Review 5(4): 111-115.

 

*Pengarang untuk surat-menyurat; email: nazlin@um.edu.my

 

 

   

   

sebelumnya