Sains Malaysiana
51(9)(2022):
3027-3041
http://doi.org/10.17576/jsm-2022-5109-23
Investigation of Effect of Various Hot Gas Atomisation and
Melting Pot Temperatures on Tin Alloy Powder Product
(Kajian Kesan Pelbagai Pengatoman Gas Panas dan Suhu Periuk
Lebur pada Produk Serbuk Aloi Timah)
AABDUL BASYIR1,*,
ROBBY KURNIA1, CHERLY FIRDHARINI1,2, DIDIK ARYANTO1, WAHYU BAMBANG WIDAYATNO1,3 &
AGUS SUKARTO WISMOGROHO1,3
1Research
Center for Physics, National Research and Innovation Agency, Indonesia
2Chemistry Department, Indonesia University, Indonesia
3Pusat Kolaborasi Riset Logam Timah, Indonesia
Diserahkan: 5 Januari
2022/Diterima: 23 April 2022
Abstract
This
research investigates the effect of different types of hot gas atomisation
(argon, nitrogen and oxygen) and melting pot temperatures on the particle size
distribution, microstructure, density and phase of tin alloy (Sn-Cu-Ni-Ge)
powder products. The tin alloy powder produced by hot argon gas atomisation had
the greatest density (7.84 g/cm3) and the most spherical shape.
While the tin alloy powder generated by hot oxygen gas atomisation had the lowest
density (6.83 g/cm3), the highest endothermic area (60.41695 area
unit) and the most elongated, irregular shape. Hot argon and nitrogen gas atomisation
at a melting pot temperature of 800 °C produced a higher yield of 0-25 µm
powder than at 700 °C. By contrast, hot oxygen atomisation produced the
opposite result. However, all the powder products prepared at 800 °C had a higher
spherical shape ratio in the range of 0-25 µm. Tin alloy powder produced by hot
oxygen gas atomisation comprised only the elements of Sn and Cu, while the powder
generated by hot argon and nitrogen gas atomisation consisted of elements such
as the ingot of this powder.
Keywords: Density; hot gas atomization; microstructure;
particle size; tin alloy powder
Abstrak
Penyelidikan ini
mengkaji kesan pelbagai jenis pengatoman gas panas (argon, nitrogen dan
oksigen) dan suhu periuk lebur pada taburan saiz zarah, struktur mikro,
ketumpatan dan fasa produk serbuk aloi timah (Sn-Cu-Ni-Ge). Serbuk aloi timah
yang dihasilkan oleh pengabusan gas argon panas mempunyai ketumpatan terbesar
(7.84 g/cm3) dan bentuk paling sfera. Manakala serbuk aloi timah yang dijana
melalui pengabusan gas oksigen panas mempunyai ketumpatan terendah (6.83
g/cm3), kawasan endoterma tertinggi (60.41695 unit kawasan) dan bentuk paling
memanjang dan tidak sekata. Pengatoman argon panas dan gas nitrogen pada suhu
periuk lebur 800 °C menghasilkan hasil serbuk 0-25 µm yang lebih tinggi
daripada pada 700 °C. Sebaliknya, pengatoman oksigen panas menghasilkan
keputusan yang bertentangan. Walau bagaimanapun, semua produk serbuk yang
disediakan pada 800 °C mempunyai nisbah bentuk sfera yang lebih tinggi dalam
julat 0-25 µm. Serbuk aloi timah yang dihasilkan melalui pengatoman gas oksigen
panas hanya terdiri daripada unsur Sn dan Cu, manakala serbuk yang dihasilkan
oleh pengatoman argon panas dan gas nitrogen terdiri daripada unsur seperti
jongkong serbuk ini.
Kata
kunci: Keamatan;
mikrostruktur; pengatoman gas panas; serbuk timah paduan; ukuran zarah
RUJUKAN
AkkaAkkas, M. & Boz, M. 2019. Investigation of the compressibility
and sinterabilty of AZ91 powder production and particle production by gas
atomisation method. Journal of Magnesium and Alloys 7(3): 400-413. https://doi.org/10.1016/j.jma.2019.05.007
Aksoy, A. & Ünal, R. 2006. Effects of gas pressure and
protrusion length of melt delivery tube on powder size and powder morphology of
nitrogen gas atomised tin powders. Powder Metallurgy 49(4): 349-354. https://doi.org/10.1179/174329006X89425
Anderson, I.E. & Terpstra, R.L. 2002. Progress toward gas
atomization processing with increased uniformity and control. Materials
Science and Engineering A 326(1): 101-109. https://doi.org/10.1016/S0921-5093(01)01427-7
Basyir, A., Aryanto, D., Wismogroho, A.S. & Widayatno,
W.B. 2020. Effect of hot isostatic pressing method to enhance quality of tin
powder. In AIP Conference Proceedings. AIP Publishing LLC. 2256(030021):
1-9. https://doi.org/10.1063/5.0014653
Chen, G., Zhao, S.Y., Tan, P., Wang, J., Xiang, C.S. & Tang,
H.P. 2018. A comparative study of Ti-6Al-4V powders for additive manufacturing
by gas atomization, plasma rotating electrode process and plasma atomization. Powder
Technology 333: 38-46. https://doi.org/10.1016/j.powtec.2018.04.013
Chhabra, R.P. & Sheth, D.K. 1990. Viscosity of molten
metals and its temperature dependence. International Journal of Material
Research 81(4): 264-271. https://doi.org/10.1515/ijmr-1990-810408
Drellishak, K.S., Aeschliman, D.P. & Cambel, A.B. 1964. Tables
of Thermodynamic Properties of Argon, Nitrogen, and Oxygen Plasmas. Illinois:
Arnold Engineering Development Center.
Feng, G., Jiao, K., Zhang, J. & Gao, S. 2021. High-temperature
viscosity of iron‑carbon melts based on liquid structure: The effect of
carbon content and temperature. Journal of Molecular Liquids 330: 115603.
https://doi.org/10.1016/j.molliq.2021.115603.
Gao, C.F., Xiao, Z.Y., Zou, H.P., Liu, Z.Q., Chen, J., Li, S.K.
& Zhang, D.T. 2019. Characterization of spherical AlSi10Mg powder
produced by double-nozzle gas atomization using different parameters. Transactions
of Nonferrous Metals Society of China 29(2): 374-384. https://doi.org/10.1016/S1003-6326(19)64947-2
Gao, M.Z., Ludwig, B. & Palmer, T.A. 2021. Impact of atomization
gas on characteristics of austenitic stainless steel powder feedstocks for
additive manufacturing. Powder Technology 383: 30-42. https://doi.org/10.1016/j.powtec.2020.12.005
Huang, Z., Czisch, C., Schreckenberg, P., Büllesfeld, F.
& Fritsching, U. 2006. Technical note: Powder production by gas atomization
of bioglass melt. Particle and Particle Systems Characterization 22(5):
345-351. https://doi.org/10.1002/ppsc.200500966
Kaysser, W.A. & Weise, W. 2000. Powder metallurgy and sintered materials. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a22_105
Kong, C.J., Brown, P.D., Harris, S.J. & McCartney, D.G.
2007. Analysis of microstructure formation in gas-atomised Al-12 Wt.% Sn-1 Wt.%
Cu alloy powder. Materials Science and Engineering A 454-455: 252-259. https://doi.org/10.1016/j.msea.2006.11.050
Metz, R., Machado, C., Houabes, M., Pansiot, J., Elkhatib,
M., Puyanē, R. & Hassanzadeh, M. 2008. Nitrogen spray atomization of
molten tin metal: powder morphology characteristics. Journal of Materials
Processing Technology 189(1-3): 132-137. https://doi.org/10.1016/j.jmatprotec.2007.01.014
Minagawa, K., Kakisawa, H., Osawa, Y., Takamori, S. & Halada,
K. 2005. Production of fine spherical lead-free solder powders by hybrid
atomization. Science and Technology of Advanced Materials 6(3-4): 325-329.
https://doi.org/10.1016/j.stam.2005.03.010
Neikov, O.D., Naboychenko, S.S.
& Yefimov, N.A. 2009. Handbook of Non-Ferrous Metal Powders:
Technologies and Applications, edited by
Neikov, O.D., Naboychenko, S.S. & Dowson, G. Amsterdam: Elsevier Ltd.
Nishimura, S., Matsumoto, S. & Terashima, K. 2002.
Variation of silicon melt viscosity with boron addition. Journal of Crystal
Growth 237-239: 1667-1670. https://doi.org/10.1016/S0022-0248(01)02317-X
Özbilen, S., Ünal, A. & Sheppard, T.
1996. Influence of liquid metal properties on particle size of inert gas
atomised powders. Powder Metallurgy 39(1): 44-52.
https://doi.org/10.1179/pom.1996.39.1.44
Özbilen, S., Ünal, A. & Sheppard, T. 1989. Influence of oxygen
on morphology and oxide content of gas atomized aluminium powders. In Physical
Chemistry of Powder Metals: Production and Processing. pp. 489-505.
Pan, H., Ji, H., Liang, M., Zhou, J. & Li, M. 2019.
Size-dependent phase transformation during gas atomization process of Cu-Sn alloy
powders. Materials 12(2): 245-257. https://doi.org/10.3390/ma12020245
Plookphol, T., Wisutmethangoon, S. & Gonsrang, S. 2011.
Influence of process parameters on SAC305 lead-free solder powder produced by
centrifugal atomization. Powder Technology 214(3): 506-512. https://doi.org/10.1016/j.powtec.2011.09.015
Tanaka, T. & Hara, S. 1997. Surface tension and viscosity
of liquid iron alloys. Materia Japan 36(1): 47-54. https://doi.org/10.2320/materia.36.47
Ünal, A. 1992. Rapid solidification of magnesium by gas
atomization. Materials and Manufacturing Processes 7(3): 441-461. https://doi.org/10.1080/10426919208947431
Ünal, A. 2018. Production of rapidly solidified aluminium
alloy powders by gas atomisation and their applications. Powder Metallurgy 33(1): 53-64. https://doi.org/10.1179/pom.1990.33.1.53
Urionabarrenetxea, E., Avello, A., Rivas, A. & Martín,
J.M. 2021. Experimental study of the influence of operational and geometric
variables on the powders produced by close-coupled gas atomisation. Materials
& Design 199: 109941. https://doi.org/10.1016/j.matdes.2020.109441
Vandel, E., Vaasma, T. & Sugita, S. 2020. Application of
image analysis technique for measurement of sand grains in sediments. MethodsX 7: 100981. https://doi.org/10.1016/j.mex.2020.100981
Vippola, M., Valkonen, M., Sarlin, E., Honkanen, M. & Huttunen,
H. 2016. Insight to nanoparticle size analysis - novel and convenient image
analysis method versus conventional techniques. Nanoscale Research Letters 11: 1-9. https://doi.org/10.1186/s11671-016-1391-z
Wisutmethangoon, S., Plookphol, T. & Sungkhaphaitoon, P.
2011. Production of SAC305 powder by ultrasonic atomization. Powder
Technology 209(1-3): 105-111. https://doi.org/10.1016/j.powtec.2011.02.016
Xie, J.W., Zhao, Y.Y. & Dunkley, J.J. 2004. Effects of processing
conditions on powder particle size and morphology in centrifugal atomisation of
tin. Powder Metallurgy 47(2): 168-172. https://doi.org/10.1179/003258904225015482
Younglove, B.A. & Olien, N.A. 1985. Tables of
Industrial Gas Container Contents and Density for Oxygen, Argon, Nitrogen,
Helium, and Hydrogen. Washington DC: United
States Government Printing Office.
Zhang, L., Chen, X., Li, D., Chen, C., Qu, X., He, X. &
Li, Z. 2015. A comparative investigation on MIM418 superalloy fabricated using
gas- and water-atomized powders. Powder Technology 286: 798-806. https://doi.org/10.1016/j.powtec.2015.09.023
Zhang, L.P. & Zhao, Y.Y. 2017. Particle size
distribution of tin powder produced by centrifugal atomisation using rotating
cups. Powder Technology 318: 62-67. https://doi.org/10.1016/j.powtec.2017.05.038
Zhao, X., Xu, J., Zhu, X. & Zhang, S. 2008. Effect of
closed-couple gas atomization pressure on the performances of Al-20Sn-1Cu powders. Rare Metals 27(4): 439-443. https://doi.org/10.1016/S1001-0521(08)60159-X
*Pengarang untuk surat-menyurat; email: abdulbasyir037@gmail.com
|