Sains Malaysiana 51(9)(2022):
3113-3123
http://doi.org/10.17576/jsm-2022-5109-30
Pencirian
Permukaan Kakisan Keluli Karbon dengan Kehadiran Konsortium Bakteria Penurun
Sulfat dalam Persekitaran Bergas CO2
(Surface
Characteristics of Carbon Steels in the Presence of Sulfate Reducing Bacteria
Consortiums in CO2 Gas Environment)
RABIAHTUL ZULKAFLI1,
NORINSAN KAMIL OTHMAN*1 & NAJMIDDIN YAAKOB2
1Department
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Centre
of Industrial Process Reliability and Sustainability (INPRES), School of
Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450,
Shah Alam, Selangor Darul Ehsan, Malaysia
Diserahkan: 11 Mac 2022/Diterima:
22 Jun 2022
Abstrak
Tingkah laku kakisan keluli karbon
API 5L X65 dengan kehadiran bakteria penurun sulfat (SRB) dalam persekitaran CO2 adalah dikaji. Uji kaji yang dijalankan bagi meneliti tingkah laku kakisan
adalah ujian kehilangan berat dan analisis permukaan. Spesimen keluli karbon
didedahkan kepada medium kawalan (tanpa konsortium bakteria) dan dengan
kehadiran konsortium SRB selama 10 hari dalam aliran gas CO2 yang
berterusan. Biofilem, produk kakisan dan kedalaman lubang yang terhasil
dicirikan dengan mikroskopi elektron imbasan pancaran medan (FESEM),
spektroskopi tenaga serakan (EDS), mikroskop fokus tak terhingga (IFM) dan
belauan sinar-x (XRD). Keputusan daripada ujian kehilangan berat mengesahkan
bahawa spesimen dalam keadaan kawalan membentuk kakisan seragam. Manakala
analisis IFM membuktikan bahawa sampel dengan kehadiran konsortium SRB
menggalakkan penghasilan kakisan setempat. Hal ini merujuk kepada nilai kadar
penembusan liang yang lebih tinggi daripada kadar kakisan seragam dengan
kehadiran konsortium SRB. Penelitian menerusi FESEM-EDS membuktikan kehadiran
sulfur pada spesimen logam yang terdedah kepada SRB dalam persekitaran CO2 yang menyokong pembentukan lapisan FeS. Seterusnya, pencirian XRD mengesahkan
pembentukan Fe3C dan FeS dalam sampel yang terdedah kepada SRB.
Kata kunci: Analisis permukaan;
kakisan CO2; kakisan setempat; konsortium SRB
Abstract
This paper studies the corrosion
behaviour of API 5L X65 carbon steel in the presence of sulfate-reducing
bacteria (SRB) in a CO2 environment. The experiments carried out to
examine the behaviour of corrosion were weight loss test and surface analysis.
The carbon steel specimens were exposed to a control medium (without the
presence bacteria consortium) and with the presence of SRB consortium for ten
days under a continuous flow of CO2 gas. The corrosion products,
inclusive of biofilm formations and pit penetrations, were characterised by
field emission scanning electron microscopy (FESEM), energy dispersive
spectrometer (EDS), infinite focus microscopy (IFM) and x-ray diffraction
(XRD). Results from the weight loss test confirmed that the specimens in the control
condition (without SRB) formed uniform corrosion. In comparison, the IFM
analysis proved that samples with the presence of SRB consortium promote
localised corrosion. The localised corrosion event refers to a higher
penetration rate value than the uniform corrosion rate in the SRB consortium.
FESEM-EDS analyses proved the presence of sulfur on metal specimens exposed to
SRB in a CO2 environment which supported the formation of FeS
layers. Furthermore, XRD characterisation confirmed the formation of Fe3C
and FeS in samples exposed to SRB.
Keywords:
CO2 corrosion; localised corrosion; SRB consortium; surface analysis
Rujukan
Abdullah,
A., Yahaya, N., Norhazilan, M.N. & Rasol, R.M. 2014. Microbial corrosion of
API 5L X-70 carbon steel by ATCC 7757 and consortium of sulfate-reducing
bacteria. Journal of Chemistry 2014:
Article ID. 130345.
Al-Mathami,
A., Saricimen, H., Kahraman, R., Al-Zahrani, M. & Al-Dulaijan, S. 2004.
Inhibition of atmospheric corrosion of mild steel by sodium dihydrogen
orthophosphate treatment. Anti-Corrosion
Methods and Materials 51(2): 121-129.
Almeida,
P.F., Almeida, R.C.C., Carvalho, E.B., Souza, E.R., Carvalho, A.S., Silva,
C.H.T.P. & Taft, C.A. 2006. Overview of sulfate-reducing bacteria and
strategies to control biosulfide generation in oil waters. In Modern Biotechnology in Medical Chemistry
and Industry. 1st ed. Chapter 9, edited by Taft, C.A. Research Signpost.
Bai, H.,
Wang, Y., Ma, Y., Zhang, Q. & Zhang, N. 2018. Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude
oil/brine mixture. Materials 11(9):
1765-1780.
Bueno,
A.H.S., Solis, J., Zhao, H., Wang, C., Simões, T.A., Bryant, M. & Neville,
A. 2018. Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on
carbon steel for use in valves, pistons and pumps in oil and gas industry. Wear 394-395: 60-70.
Castaneda,
H. & Benetton, X.D. 2008. SRB-biofilm influence in active corrosion sites
formed at the steel-electrolyte interface when exposed to artificial seawater
conditions. Corrosion Science 50(4):
1169-1183.
De Paula,
M.S., Gonçalves, M.M.M., da Cruz Rola, M.A., Maciel, D.J., De Senna, L.F. &
Do Lago, D.C.B. 2016. Carbon steel corrosion induced by sulphate-reducing
bacteria in artificial seawater: Electrochemical and morphological
characterizations. Revista Materia 21(4): 987-995.
Di
Bonaventura, M., Brown, B., Nešić, S. & Singer, M. 2019. Effect of
flow and steel microstructure on the formation of iron carbonate. Corrosion 75(10): 1183-1193.
Elgadda, R.,
Naidu, A., Ahmed, R., Shah, S., Hassani, S., Osisanya, S.O. & Saasen, A.
2015. Modeling and experimental study of CO2 corrosion on carbon
steel at elevated pressure and temperature. Journal
of Natural Gas Science and Engineering 27: 1620-1629.
Fan, M.M.,
Liu, H.F. & Dong, Z.H. 2013. Microbiologically influenced corrosion of X60
carbon steel in CO2-saturated oilfield flooding water. Materials and Corrosion 64(3): 242-246.
Feng, R.,
Beck, J.R., Hall, D.M., Buyuksagis, A., Ziomek-Moroz, M. & Lvov, S.N. 2018.
Effects of CO2 and H2S on corrosion of martensitic steels
in brines at low temperature. Corrosion 74(3): 276-287.
Finšgar, M.
& Jackson, J. 2014. Application of corrosion inhibitors for steels in
acidic media for the oil and gas industry: A review. Corrosion Science 86: 17-41.
Gao, S.,
Brown, B., Young, D. & Singer, M. 2018. Formation of iron oxide and iron
sulfide at high temperature and their effects on corrosion. Corrosion Science 135: 167-176.
Guan, F.,
Zhai, X., Duan, J., Zhang, M. & Hou, B. 2016. Influence of sulfate-reducing
bacteria on the corrosion behavior of high strength steel eq70 under cathodic
polarization. PLoS ONE 11(9):
e0162315.
Idris, M.N.,
Daud, A.R., Mahat, N., Sahrani, F.K. & Othman, N.K. 2016. Perlindungan
biokakisan keluli karbon akibat bakteria penurun sulfat yang dipencil daripada
minyak mentah tropika. Sains Malaysiana 45(12): 1835-1841.
Idris, M.N.,
Daud, A.R. & Othman, N.K. 2016. Analisis keberkesanan benziltrietilamonium
klorida sebagai perencat kakisan bagi perlindungan keluli karbon. Sains Malaysiana 45(2): 271-277.
Kim, S.,
Lim, Y.I., Lee, D., Seo, M.W., Mun, T.Y. & Lee, J.G. 2021. Effects of flue
gas recirculation on energy, exergy, environment, and economics in oxy-coal
circulating fluidized-bed power plants with CO2 capture. International Journal of Energy Research 45(4): 5852-5865.
Kosasang,
O., Chumphongphan, S. & Wongkaewmoon, M. 2021. Effect of aging heat
treatment on corrosion behavior and corrosion kinetics of 17-4PH stainless
steel in artificial saliva. Sains
Malaysiana 50(3): 849-858.
Li, Y.,
Feng, S., Liu, H., Tian, X., Xia, Y., Li, M., Xu, K., Yu, H.B., Liu, Q. &
Chen, C.F. 2020. Bacterial distribution in SRB biofilm affects MIC pitting of
carbon steel studied using FIB-SEM. Corrosion
Science 167: 108512.
Li, Y., Xu,
D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F. & Gu, T. 2018.
Anaerobic microbiologically influenced corrosion mechanisms interpreted using
bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology 34(10): 1713-1718.
Liu, H.
& Cheng, Y.F. 2018. Microbial corrosion of X52 pipeline steel under soil
with varied thicknesses soaked with a simulated soil solution containing
sulfate-reducing bacteria and the associated galvanic coupling effect. Electrochimica Acta 266: 312-325.
Liu, H.,
Meng, G., Li, W., Gu, T. & Liu, H. 2019. Microbiologically influenced
corrosion of carbon steel beneath a deposit in CO2-saturated
formation water containing Desulfotomaculum
nigrificans. Frontiers in
Microbiology https://www.frontiersin.org/articles/10.3389/fmicb.2019.01298/full
Mahat, N.A.,
Othman, N.K., Sahrani, F.K. & Idris, M.N. 2015. Inhibition of consortium
sulfate reducing bacteria from crude oil for carbon steel protection. Sains Malaysiana 44(11): 1587-1591.
Pessu, F.
& Barker, R. 2017. Pitting and uniform corrosion of X65 carbon steel in
sour corrosion environments: The influence of CO2, H2S
and temperature. Corrosion 73(5):
451-604.
Pessu, F.,
Barker, R. & Neville, A. 2015. The influence of pH on localized corrosion
behavior of X65 carbon steel in CO2-saturated brines. Corrosion 71(12): 1452-1466.
Pessu, F.,
Barker, R. & Neville, A. 2017. Pitting and uniform corrosion of X65 carbon
steel in sour corrosion environments: The influence of CO2, H2S,
and temperature. Corrosion 73(9):
1168-1183.
Pessu, F.,
Hua, Y., Barker, R. & Neville, A. 2018. A study of the pitting and uniform
corrosion characteristics of X65 carbon steel in different H2S-CO2-containing
environments. Corrosion 74(8):
886-902.
Shah, M.,
Abdul Manap, N.R., Mawardi Ayob, M.T., Yaakob, N., Embong, Z. & Kamil
Othman, N. 2021. Effect of pH2S influence on austenitic stainless
steel 316L corrosion behaviours in chloride environment / Kesan pengaruh
tekanan separa gas H2S terhadap tingkah laku kakisan keluli tahan
karat 316L di persekitaran klorida. Malaysian
Journal of Civil Engineering 33(2): https://doi.org/10.11113/mjce.v33.16697
Sun, C.,
Sun, J., Wang, Y., Lin, X., Li, X., Cheng, X. & Liu, H. 2016. Synergistic
effect of O2, H2S and SO2 impurities on the
corrosion behavior of X65 steel in water-saturated supercritical CO2 system. Corrosion Science 107:
193-203.
Uttaruk, Y.
& Laosuwan, T. 2019. Development of prototype project for carbon storage
and greenhouse gas emission reduction from Thailand’s agricultural sector. Sains Malaysiana 48(10): 2083-2092.
Wu, T., Sun,
C., Xu, J., Yan, M., Yin, F. & Ke, W. 2018. A study on bacteria-assisted
cracking of X80 pipeline steel in soil environment. Corrosion Engineering Science and Technology 53(4): 265-275.
Yaakob, N.,
Singer, M. & Young, D. 2015. Elemental sulfur corrosion of carbon steel in
the presence of sulfur solvent and monoethylene glycol. NACE - International Corrosion Conference Series NACE-2015-5930.
Yu, H., Ma,
L., Li, Z. & Jiang, R. 2018. The microbiologically influenced corrosion of
L245NS carbon steel by sulfate-reducing bacteria in H2S solutions. International Journal of Electrochemical
Science 13(10): 9416-9427.
Yuli Panca
Asmara. 2018. The roles of H2S gas in behavior of carbon steel corrosion in oil
and gas environment: A review. Jurnal
Teknik Mesin (JTM) 7(1): 37-43.
Zhang, C.,
Zahedi Asl, V., Lu, Y. & Zhao, J. 2020. Investigation of the corrosion
inhibition performances of various inhibitors for carbon steel in CO2 and CO2/H2S environments. Corrosion Engineering Science and Technology 55(7): 531-538.
*Pengarang untuk surat-menyurat;
email: insan@ukm.edu.my
|