Sains Malaysiana
52(2)(2023): 547-561
http://doi.org/10.17576/jsm-2023-5202-17
Methylene
Blue Adsorption by Acid Post-Treated Low Temperature Biochar Derived from
Banana (Musa
acuminata) Pseudostem
(Penjerapan Metilena Biru oleh Bioarang Bersuhu Rendah
Selepas Dirawat Asid Dihasilkan daripada Batang Pseudo Pisang (Musa acuminata))
NOOR HALINI BAHARIM*, FRIDELINA SJAHRIR,
RAHMAD MOHD TAIB, NORAZLINA IDRIS & TUAN AZMAR TUAN DAUD
Department of Science and Biotechnology, Faculty of
Engineering and Life Sciences, Universiti Selangor, Jalan Timur Tambahan, 45600
Bestari Jaya, Selangor Darul Ehsan, Malaysia
Diserahkan: 17 Juai
2022/Diterima: 19 Disember 2022
Abstract
The adsorption of methylene blue dye solution using
low temperature biochar (PSB) and acid post-treated biochar (PT-PSB) derived
from banana (Musa acuminata) pseudostem
was investigated. The raw material was oven-dried at 105 °C for 24 h and then
carbonized via slow pyrolysis at a low temperature of 300 °C for 1 h. The
biochar was further treated with 1.0 M HCl for 24 h. At room temperature, batch
adsorption experiments were conducted to determine the removal efficiency of
methylene blue at different parameters; solution pH (3-10), adsorbent dosage
(0.05-0.30 g) and initial concentration (25-150 mg/L). The results exhibited
that the highest removal efficiency of methylene blue using PSB was 96.6% at
optimum solution pH 6 with the adsorbent dosage of 0.20 g. Nevertheless, the
better removal efficiency of methylene blue using PT-PSB was identified (99.3%)
at optimum solution pH 7 and adsorbent dosage of 0.25 g. The initial
concentration of 25 mg/L showed the maximum removal efficiency for both PSB and
PT-PSB. The adsorption isotherm analysis showed that both PSB and PT-PSB were
better fitted with the Freundlich isotherm model which indicates multilayer
adsorption onto the heterogeneous surface of the adsorbents. Kinetic data
showed that the adsorption of methylene blue onto PSB and PT-PSB was well
fitted by the pseudo-second order model, indicating chemical adsorption. Banana
pseudostem showed great potential to be used as an efficient low-cost and
environmentally friendly adsorbent for the removal of methylene blue from
aqueous solution.
Keywords: Acid post-treated biochar; adsorption; banana
pseudostem; methylene blue
Abstrak
Penjerapan larutan pewarna metilena biru menggunakan
bioarang bersuhu rendah (PSB) dan bioarang selepas dirawat asid (PT-PSB) yang
berasal daripada batang pseudo pisang (Musa acuminata) dikaji. Bahan
mentah dikeringkan dengan ketuhar pada suhu 105 °C selama 24 jam dan seterusnya
dibakar melalui pirolisis perlahan pada suhu rendah 300 °C selama 1 jam.
Bioarang seterusnya dirawat dengan 1.0 M HCl untuk 24 jam. Pada suhu bilik, uji
kaji penjerapan kumpulan dijalankan untuk menentukan kecekapan penyingkiran
metilena biru pada parameter pemboleh ubah yang berbeza; pH larutan (3-10), dos
penjerap (0.05-0.30 g) dan kepekatan awal (25-150 mg/L). Keputusan menunjukkan
kecekapan penyingkiran tertinggi metilena biru menggunakan PSB adalah 96.6%
pada pH larutan optimum 6 dengan dos penjerap 0.20 g. Walau bagaimanapun,
kecekapan penyingkiran metilena biru yang lebih baik menggunakan PT-PSB
ditentukan (99.3%) pada pH larutan optimum 7 dan dos penjerap 0.25 g. Kepekatan
awal 25 mg/L menunjukkan kecekapan penyingkiran yang maksimum bagi kedua-dua
PSB dan PT-PSB. Analisis isoterma penjerapan menunjukkan kedua-dua PSB dan
PT-PSB adalah lebih berpadanan dengan model isoterma Freundlich yang
menunjukkan penjerapan berbilang lapisan ke permukaan heterogen penjerap. Data
kinetik menunjukkan penjerapan metilena biru ke PSB dan PT-PSB adalah sangat
berpadanan dengan model tertib kedua pseudo, menunjukkan penjerapan kimia. Batang pseudo pisang
berpotensi besar digunakan sebagai penjerap berkos rendah yang cekap dan mesra
alam untuk penyingkiran metilena biru daripada larutan akues.
Kata kunci: Batang pisang pseudo;
bioarang selepas dirawat asid; metilena biru; penjerapan
RUJUKAN
Abd-Elhamid, A.I., Emran, M.,
El-Sadek, M.H., El-Shanshory, A.A., Soliman, H.M.A., Akl, M.A. & Rashad, M.
2020. Enhanced removal of cationic dye by eco-friendly activated biochar
derived from rice straw. Applied Water Science 10(45). https://doi.org/10.1007/s13201-019-1128-0
Ahmad,
A., Khan, N., Giri, B.S., Chowdhary, P. & Chaturvedi, P. 2020. Removal of
methylene blue dye using rice husk, cow dung and sludge biochar:
Characterization, application, and kinetic studies. Bioresource Technology https://doi.org/10.1016/j.biortech.2020.123202
Al‐Mokhalelati, K.,
Al‐Bakri, I. & Al Shibeh Al Wattar, N. 2021. Adsorption of methylene
blue onto sugarcane bagasse‐based adsorbent materials. Journal of
Physical Organic Chemistry 34(7). https://doi:10.1002/poc.4193
Ali, H.
2010. Biodegradation of synthetic dyes-a review. Water Soil Pollution 213: 251-273. https://doi.org/10.1007/s11270-010-0382-4
Amin, M.T., Alazba, A.A. & Shafiq, M. 2019.
Comparative study for adsorption of methylene blue dye on biochar derived from
orange peel and banana biomass in aqueous solutions. Environmental
Monitoring and Assessment 191(12): 735. https://doi.org/10.1007/s10661-019-7915-0
Amin, N.K. 2009. Removal of
direct blue-106 dye from aqueous solution using a new activated carbons
developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal
of Hazardous Materials 165: 52-62.
Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C.
& Karakaya, N. 2016. Use of chabazite, a naturally abundant zeolite, for the
investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous
Mesoporous Material 235: 78-86.
Baharim, N.H., Sjahrir, F., Taib, R.M., Idris, N.,
Daud, T.A.T., Solleh, M.R.M. & Radin, H. 2022. Removal of copper ion from
aqueous solution using biosorbent derived from banana pseudo stem. Selangor
Science and Technology Review 6(2): 44-50.
Bhatia, D., Datta, D., Joshi, A., Gupta, S. &
Gote, Y. 2018. Adsorption study for the separation of isonicotinic acid from
aqueous solution n using activated carbon/Fe3O4 composites. Journal of Chemical and Engineering Data 63: 436-445.
Chahm,
T., Martins, B.A. & Rodrigues, C.A. 2018. Adsorption of methylene blue and
crystal violet on low-cost adsorbent: Waste fruits of Rapanea ferruginea (ethanol-treated
and H2SO4-treated). Environmental Earth Sciences 77(13).
https://doi:10.1007/s12665-018-76812
Chen, W., Chen, F., Ji, B.,
Zhu, L. & Song, H. 2019. Insights into the mechanism of methylene blue
removed by novel and classic biochars. Water Science and Technology 79(8):
1561-1570.
Chen, Y., Lin, Y., Ho, S.,
Zhou, Y. & Ren, N. 2018. Highly efficient adsorption of dyes by biochar
derived from pigments extracted macroalgae pyrolyzed at different temperature. Bioresources
Technology 259: 104-110.
Choi,
H.J. & Yu, S.W. 2019. Biosorption of methylene blue from aqueous solution
by agricultural bioadsorbent corncob. Environmental Engineering Research 24(1): 99-106.
Crini, G. 2006. Non-conventional low-cost adsorbents
for dye removal: A review. Bioresource Technology 97(9): 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
Da Silva, J.S., da Rosa, M.P., Beck, P.H., Peres,
E.C., Dotto, G.L., Kessler, F. & Grasel, F.S. 2018. Preparation of an
alternative adsorbent from Acacia mearnsii wastes through acetosolv
method and its application for dye removal. Journal of Cleaner Production 180: 386-394.
Deng, H., Li, Y.F., Tao, S.Q.,
Li, A.Y., Li, Q.Y. & Hu, L.N. 2021. Efficient adsorption capability of
banana and cassava biochar for malachite green: Removal process and mechanism
exploration. Environmental Engineering Research 27(3). https://doi.org/10.4491/eer.2020.575
Hariz, A.R.M., Azlina,
W.A.K.G.W., Fazly, M.M., Norziana, Z.Z., Ridzuan, M.D.M., Tosiah, S. & Ain,
A.B.N. 2015. Local practices for production of rice husk biochar and coconut
shell biochar: Production methods, product characteristics, nutrient and field
water holding capacity. Journal of Tropical Agriculture and Food Science 43(1): 91-101.
Hu, Z.P. & Gao, Z.M.
2018. High-surface-area activated red mud for efficient removal of methylene
blue form wastewater. Adsorption Science and Technology 36(1-2): 62-79.
Jadhav, S.K. & Thorat, S.R. 2022. Adsorption
isotherm study of crystal violet dye onto biochar prepared from agriculture
waste. Oriental Journal of Chemistry 38(2): 475-481.
Kapoor, R.T., Rafatullah, M., Siddiqui, M.R., Khan,
M.A. & Sillanpää, M. 2022. Removal of reactive black 5 dye by banana peel
biochar and evaluation of its phytotoxicity on tomato. Sustainability 14: 4176. https://doi.org/10.3390/su14074176
Karim, A.A., Kumar, M., Mohapatra, S., Panda, C.R.
& Singh, A. 2015. Banana peduncle biochar: Characteristics and adsorption
of hexavalent chromium from aqueous solution. International Research Journal
of Pure & Applied Chemistry 7(1): 1-10.
Katheresan, V., Kansedo, J. & Lau, S.Y. 2018.
Efficiency of various recent wastewater dye removal methods: A review. Journal
of Environmental Chemical Engineering 6:
4676-4697.
Khataee, A.R., Vafaei, F.
& Jannatkhah, M. 2013. Biosorption of three textile dyes from contaminated
water by filamentous green Algal spirogyra sp.: Kinetic, isotherm and
thermodynamic studies. International Biodeterioration and Biodegradation 83: 33-40.
Kim, H., Ko, R.A., Lee, S.
& Chon, K. 2020. Removal efficiencies of manganese and iron using pristine
and phosphoric acid pre-treated biochars made from banana peels. Water 12(4):
1173. https://doi.org/10.3390/w12041173
Kumar, P.S., Sivaprakash, S. & Jayakumar, N. 2017.
Removal of methylene blue dye from aqueous solutions using Lagerstroemia
indica seed (LIS) activated carbon. International Journal of Materials
Science 12(1): 107-116.
Kumar, U., Vibhute, B. &
Parikh, S. 2021. Experimental study of adsorption efficiency of methylene blue
dye by using banana leaf biochar as an adsorbent. Journal of Physics:
Conference Series 1979: 012003. https://doi:10.1088/1742-6596/1979/1/012003
Kumar, U., Vibhute, B., Sharma, N. & Sahay, A.
2022. Efficient removal of methylene blue dye by alkaline-treated banana stem
biochar through adsorption method. Applied Ecology and Environmental
Sciences 10(4): 236-243.
Li, Y., Zhang, Y., Zhang, Y., Wang, G., Li, S., Han,
R. & Wei, W. 2018. Reed biochar supported hydroxyapatite nanocomposite:
Characterization and reactivity for methylene blue removal from aqueous media. Journal
of Molecular Liquids 263: 53-63.
Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y. &
Xue, X. 2019. A modified method for enhancing adsorption capability of banana
pseudostem biochar towards methylene blue
at low temperature. Bioresource Technology 282: 48-55. https://doi.org/10.1016/j.biortech.2019.02.092
Mahdi, Z., Hanandeh, A.E. & Yu, Q.J. 2019.
Preparation, characterization and application of surface modified biochar from
date seed for improved lead, copper and nickel removal from aqueous solutions. Journal
of Environmental Chemical Engineering 7: 103379. https://doi.org/10.1016/j.jece.2019.103379
Nayak, A., Bhushan, B., Gupta, V. & Sharma, P.
2017. Chemically activated carbon from lignocellulosic wastes for heavy metal
wastewater remediation: Effect of activation conditions. Journal of Colloid
Interface Science 493: 228-240.
Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L.,
Li, X., Zhang, K. & Zhu, T. 2017. Removal of azo dye in an up-flow
membrane-less bioelectrochemical system integrated with bio-contact oxidation
reactor. Chemical Engineering Journal 326: 454-461. https://doi.org/10.1016/j.cej.2017.05.146
Praveen,
S., Bhagavathi, P.T., Gokulan, R. & Jegan, J. 2020. Evaluation of the
adsorption capacity of Cocos nucifera shell derived biochar for basic
dyes sequestration from aqueous solution. Energy Sources, Part A: Recovery,
Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1800142
Saini, R.D. 2017. Textile organic dyes: Polluting
effects and elimination methods from textile waste water. International
Journal of Chemical Engineering Research 9(1): 121-136.
Shoukat,
S., Bhatti, H.N., Iqbal, M. & Noreen, S. 2017. Mango stone biocomposite
preparation and application for crystal violet adsorption: A mechanistic study. Microporous and Mesoporous Materials 239: 180-189.
Tang,
R., Dai, C., Li, C., Liu, W., Gao, S. & Wang, C. 2017. Removal of methylene
blue from aqueous solution using agricultural solution using agricultural
residue walnut shell: Equilibrium, kinetic and thermodynamic studies. Journal
of Chemistry 4: 1-10. https://doi.org/10.1155/2017/8404965
Tharaneedhar, V., Kumar, P.S., Saravanan, A.,
Ravikumar, C. & Jaikumar, V. 2016. Prediction and interpretation of
adsorption parameters for the sequestration of methylene blue dye from aqueous
solution using microwave assisted corncob activated carbon. Sustainable
Materials and Technologies 11: 1-11.
Yao, X., Ji, L., Guo, J., Ge,
S., Lu, W., Cai, L., Wang, Y., Song, W. & Zhang, H. 2020. Magnetic
activated biochar nanocomposites derived from wakame and its application in
methylene blue adsorption. Bioresource Technology 302: 122842. https://doi:10.1016/j.biortech.2020.12284
Yuan, X., Zhuo, S.P., Xing, W., Cui, H.Y., Dai, X.D.,
Liu, X.M. & Yan, Z.F. 2007. Aqueous dye adsorption on ordered mesoporous
carbons. Journal of Colloid and Interface Science 310(1): 83-89.
Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S.,
Shah, S.T., Adebisi, G.A., Marliana, E., Rafique, R.F. & Johan, R. 2017.
Pyrolysis: A sustainable way to generate energy from waste. In: Pyrolysis,
edited by Mohamed Samer. London: Intech Open Science. pp. 3-36.
Zhou, Y., Hu, Y., Huang, W., Cheng, G., Cui, C. &
Lu, J. 2018. A novel amphoteric B-cyclodextrin-based adsorbent for simultaneous
removal of cationic/anionic dyes and bisphenol A. Chemical Engineering
Journal 341: 47-57. https://doi.org/10.1021/acs.est.5b02227
*Pengarang untuk surat-menyurat; email: halini@unisel.edu.my
|