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Existence Results for a Family of Equations of Fractional Resolvent
(Keputusan Kewujudan bagi Keluarga Persamaan Pecahan Berperingkat)
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ABSTRACT

This study deals with the presence and distinction of bounded m-solutions (type mild) for a family of generalized integral 
and differential equations of spot order with fractional resolvent and indefinite delay.
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ABSTRAK

Kajian ini membincangkan kehadiran dan perbezaan terbatas m-penyelesaian (jenis lembut) untuk keluarga integral 
umum dan persamaan pembezaan titik tertib dengan pecahan berperingkat dan lengah tak tentu.

Kata kunci: Kalkulus pecahan; pecahan pembezaan pengoperasi; persamaan pembezaan pecahan

INTRODUCTION

Araya and Lizama (2008) imposed the concept of 
α-resolvent families to establish the existence of 
m-solutions to the differential equation: 

	
	
in a Banach space Ξ, for automorphism functions   
In addition, the authors prove the presence and distinction 
of:

	  
	
as well as: 

	 	

	 Numerous researchers established the existence and 
uniqueness of m-solution for different types of fractional 
differential equations and differential-integral equations 
(Agarwal et al. 2012; Cuevas & Lizama 2008; Diagana 
2009; Ponce 2013). Furthermore, Cuevas and Lizama 
(2008) elected almost mild solutions for:

	
	
where Λ is a linear operator and  φ(t, x) is almost 
automoorphic Lipschitz in x. Agarwal et al. (2012) 
studied analytic resolvent operator and existence results 
for fractional integro- differential equations of the form:

	
	
	 Ponce (2013) considered the presence and distinction 
of bounded solutions for the linear fractional differential 
equation:

	
	
where Λ is a closed linear operator defined in a Banach 
space Ξ, α > 0, a ∈ L1(R+) is a scalar-valued kernel and  
f :R × Ξ → Ξ substitutes some Lipschitz type conditions. 
Dhanapalan et al. (2014) created the presence and 
distinction of m-solution of a class of nonlinear fractional 
integral-differential equations: 

	

in a Banach space Ξ, where 0 < α < 1. The results 
are obtained by fixed point theorems. The results are 
established by using Krasnoselskii fixed point theorem 
and the contraction mapping principle. All the fractional 
operators are defined in the sense of the Riemann-Liouville 
fractional calculus.
	 In this conduct, we deal with the finding and regularity 
of m- solutions for a class of abstract fractional integral-
differential equations of the pattern:

	 	 (1) 

	 	 (2)

where  and  Ξ → Ξ, t ≥ 
0, are closed linear operators;   is a Banach space; 
the antiquity v*:(–∞, 0] → Ξ, v*(θ) = (t + θ) accords in 
B and φ, ψ:J × B → Ξ are devoted functions. Finally, Dα 
stands the Caputo fractional derivative (Kilbas et al. 2006; 
Podlubny 1999),
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where m is the closed integer greater than α. Recently, 
different studies concerning the fractional differential and 
integral equations, such as Ulam stability and equations 
with maxima are included in the works of Agarwal et al. 
(2014), Ibrahim (2014), (2013), (2012a), (2012b) and 
Ibrahim and Jalab (2010).

MATERIALS AND METHODS

During the whole of this work,  is B-space (the space 
of Banach) and Λ:dom(Λ) ⊂ Ξ → Ξ, V(t) ⊂ dom(V(t)) 
⊂ Ξ → Ξ, t ≥ 0,  are closed linear operators applied on a 
common domain dom(Λ) which is dense in Ξ. To get our 
results, we suppose that the Cauchy problem:

	
	 (3)

has an associated α-resolvent bounded operator on Ξ.

Definition 2.1 Consider the family of bounded operators  
(Fa(t)t ≥ 0 from Ξ into Ξ. Then it is called α-resolvent 
operator family for system (3) if the following assumptions 
are satisfied:

Fα(0) = id, (the identity function);  
for all v ∈ Ξ; 

 and Fa(.)  for every 
v ∈ dom(Λ); 

For each v ∈ dom(Λ) and t ≥ 0, 

	 	 (4)

	 	 (5)

	 Let  and assume the integral-differential 
Cauchy problem:

	 	 (6)

	 We introduce the subsidiary concepts of m-solution 
and c-solution (classical) for framework (6):

Definition 2.2 A function  is called a m-solution 
of (6) on J, if v(0) = z and

	 	 (7)

Definit ion 2.3  A function  is  called a 
c-solution (classic solution) of (6) on J, if v(0) = z, 

 and (6) is verified.

Let B be a complete linear space of functions  
endowed with a semi-norm  We need the following 
assumptions in the sequel:

(A1) If   is continuous on 
[ζ,ζ+a] and v*:(–∞, ζ + a) → B,  then for every t ∈ [ζ,ζ + a) 
we receive

	

	

where Hα > 0 is a positive constant depending on α; Kα, 
Mα:[0,8) → [1,∞), Kα is continuous, Mα is locally bounded 
and  Hα, Kα, Mα are independent of v(.).

(A2) The continuous function v:(–∞,ζ+b] → Ξ, b < T 
achieves  and the derivative exists. If the function 
w:(–∞,0] → Ξ  defined by w(θ) = 0 for θ < 0 and w(0) = 

v'(ζ) ∈ B, then  

	 Assume that   and  are Banach spaces. 
Here, the representation L(U, V) attitudes for the Banach 
space of bounded linear operators from U into V endowed 
with the uniform operator topology and we abridge this 
symbol to L(V) when V = U. The documentation, Br(v, V) 
attitudes as the closed ball with center at v and radius  r > 
0 in V. In addition, for a bounded function  γ:[0, a] → V 
and t ∈ [0, a], a < T, we employ the realization:
 
	 	 (8)

and the extension of this symbol to γ*, when no turmoil 
regarding the space V appears.

Definition 2.4 Let Λ:Ξ → ϒ be a linear operator. The graph 
of Λ is given by

	 Gr(Λ):= {(s, Λs) ∈ Ξ × ϒ, s ∈ dom(Λ)} 
	
The graph norm is: 

	

	 In the supplement,  [dom(Λ)] is the domain of Λ 
accorded through the graph norm.

CONTINUATION OF MILD SOLUTIONS

In this section, we establish the presence of m-solutions 
of the fractional system (1)-(2). Motivated by (7), we 
introduce the coming notions of m-solutions:
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Definition 3.1 A function  v:(–∞,b) → Ξ, 0 < b ≤ T 
is demanded a m-solution (mild) of (1)-(2) on J, if 

  the functions τ → ΛFα(t – τ)φ(τ,v*(ζ))  
and  are integrable on J 
for every t ∈ J and, 

	

	

where 
	 It is well known that for all χ ∈ Ξ there exists a unique 
mild solution of the abstract Cauchy problem, if and only 
if, the resolvent set generated by Λ is nonempty and for 
all χ ∈ dom(Λ) there exists a unique classical solution of 
the Cauchy problem (Arendt et al. 2011; Theorem 3.1.12). 
Therefore, we utilize the resolvent family in all terms of v(t)   
in Definition 3.1, to establish a unique classical solution 
for (1)-(2).

To prove our findings, we illustrate the following 
hypotheses:

(C1) There exists a Banach space  continuously 
embedded in Ξ such that,

	  

and Vα(t) ∈ L(ϒ,Ξ). Additionally,  and 
 for every v ∈ ϒ.

 
Let,

	

and

	

	
	  
(C2) Let ψ: J × B → Ξ be a function achieving the coming 
hypotheses:

	 ψ(t,.): B → Ξ is continuous ∀t ∈ J;

	 ∀w ∈ Ξ, the function ψ(.,w):J → Ξ is strongly 
measurable; 
	 Let    and the continuous non-
decreasing function ΩΨ:[0,∞) → (0,∞) be such that 

 for all (t,w) ∈ J × B. 

(C3) The continuous function φ: J × B → Ξ is such that 
φ(J × B) ⊂ ϒ and the constants κ1 > 0, κ2 > 0  accomplish  

 for each (t, v) ∈ J × B.

(C4) The functions  φ:R × B → Ξ so that φ(J × B) ⊂ ϒ and  
 are continuous carrying out

	
	
(C5) ψ:R × B → Ξ and   are continuous 
executing:

	
	
(C

ϕ
) Let 0 < b ≤ T and S(b) = {v:(–∞, b] → Ξ:v0 = 0,  

 endowed with the uniform convergence 
topology on [0,b]. For each bounded set  B ⊂ S(b), the set 
of functions   is equicontinuous 
on [0,b].

Remark 3.1 Condition (C1) implies the estimates:

	

	
	  
we close out that the functions τ → ΛFα(t – τ)v(τ) and 

 are integrable on [0,t].

Remark 3.2 In the remainder here, we let λ:(–∞, T] → Ξ  
be so that

	
	

Moreover, 

	

Now, we may impose our first existence finding.

Theorem 3.1 Assume the hypotheses (C1) – (C3) and   (Cϕ) 
are achieved. Suppose

	
	

with the following condition (C'): for each t ∈ (0,T] and  r 
> 0, there exist a compact set  in ϒand a compact set  
in Ξ such that  and    for 
every (τ, v) ∈ [0,t] × Br,a (0, B). Then there exists at least 
one m-solution of (1)-(2) on  [0, b] for some 0 < b ≤ T. 
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Proof for 0 < b ≤ a, we have the inequalities:

	 	 (9)

and

	  	

where, 

	 	

Define a function space:

	

endowed with the uniform convergence topology, we 
characterize the operator Ψ:S(b) → S(b) by (Ψv)(0) = 0 and
	

	

In view of Remark 3.1 and condition (C3) yield ΨS(b) 
⊂ S(b).
	 We proceed to establish that Ψ satisfies the Leray-
Schauder Theorem. Let (vn)n∈N be a sequence in S(b)  and 
v ∈ S(b)  with vn → v in S(b). Consequently, we retrieve 

 is relatively compact 
set in B along with  uniformly for  as n → ∞. Consequently, 
we receive that  is uniformly on [0,b] when n → ∞ Hence 
the Lebesgue dominated convergence Theorem implies 
that Ψ is continuous.
	 Next, we prove the boundedness of solutions of the 
integral equation z = λΨz, λ ∈ (0,1). Let vλ be a solution 
of  z = λΨz, λ ∈ (0,1) and vλ be the function defined by:

	
 
By employing  we get that,

	

which shows that, 

	

Consequently, we obtain: 

	 	 (10)

Indicated by: 

	

we have 	

	

and

	

	 This inequality and (9) appearance that  
is uniformly bounded on [0, b] which implies that 

 is bounded in the space S(b). To establish that 
Ψ is completely continuous, we consider the atomization 

 where

	

	
where (Ψix)0 = 0 for i = 1, 2, 3. We shall use the notations  
Bρ = Bρ (0, S(b), ρ > 0 and  

Step 1. Our aim was to prove (Ψ2Bρ,α)(t) = {Ψ2v(t):v∈ Bρ, 
∀t ∈ [0,b]} is relatively compact in Ξ. 
	 The trivial case, when t = 0. Therefore, we put 
0<ε<t<b. From the hypotheses, we may consider the 
inequality: 

	 0 = t0 < t1 < … tn = t – ε	

such that    for every s, s'∈[ti,ti+1], 
i = 0, 1, 2, …, n–1.  Let v ∈ Bρ. In virtue of the mean value 
theorem, we impose:
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which shows that  is relatively compact in Ξ.

Step 2. The set Ψ2Bρ = {Ψ2v:v ∈ Bρ} is equicontinuous 
on [0,b].
	 Suppose 0 < ε < t < b and 0 < δ < ε such that 

  for all s, s'∈[ε,b] with   In 
view of the above assumption, for v ∈ Bρ and  
with  implies that:

	  
 	
which shows that Ψ2Bρ equicontinuity at t ∈ (0, T). Hence, 
Ψ2 is completely continuous. By utilizing (Hernandez 
& McKibben 2005; Lemma 3.1], yields Ψ1  and Ψ3 
are completely continuous. In view of Leray Schauder 
Theorem, we come to conclude that Ψ has a fixed point  v 
∈ S(b). Apparently,  u = v + w represents as a m-solution 
of  in the interval [0, b]. This completes the proof. 
	 By employing the records occurred in Remark 3.2, we 
get the following theorem:

Theorem 3.2 Let the status  and (C1), (C4) and (C5) be 
hold.  If  then there exists a unique 
m-solution of (1) – (2)   in J.

Proof: Let b1, r, Cφ, CΨ be positive constants satisfying 

 
where (t, w) ∈ [0,b1]× Br(ϕ, B). 

Now, we apply 0 < b < b1 and 0 < q < b in 

	

	

	  

	

	  
	 Let Ψ as in the proof of Theorem 3.1. Our target is 
to show that Ψ is a contraction mapping from Bq(0, S(b)) 
into Bq(0, S(b)). For v ∈ S(b) we impose: 

	
	
Hence,

	

	

	

which admits Ψv ∈ Bq(0, S(b)). However, for υ, u ∈ S(b) 
and t ∈ J, we have:

	
 	

	

	

this yields  Ψ is a contraction on Bq(0, S(b)). 

Theorem 3.3 Let suppositions  (C1), (C4) and (C') be hold. 
Assume,  Then (1)-(2) admits a unique m-solution.

Proof: Let b, r, q and Ψ as in the proof of Theorem 3.2 and 
let  Ψ = Ψ1 = Ψ2 where (Ψiv)0 = 0 such that:

	 	  
	
By Theorem 3.2, we receive  
and that Ψ1 is completely continuous on  Bq(0, S(b)).
Furthermore, in the same manner of Theorem 3.1, it 
follows that Ψ2 is completely continuous on Bq(0, S(b)), 
which concludes Ψ is a condensing operator (Martin 1987; 
Theorem 4.3.2).

DISCUSSION

Here, we introduce utilization of our abstract outcomes. We 
start with Ξ is finite dimensional. Consider the following 
neutral fractional differential equation:

	 	 (11)

	 Suppose that Λ is a generator of the bounded linear 
operators (Tα(t)t ≥ 0 on Ξ achieving  Mα > 0 for 
every t ∈ [0,α].  We define fractional power linear operator 
(–Λ)α for  0 < α ≤ 1, with its domain dom(–Λ)α. In addition, 
dom(–Λ)α is dense in  Ξ such that:

	  

define a norm on dom(–Λ)α. If  (Ξα, α ∈ (0,1) denotes the 
space dom(–Λ)α equipped with the norm  then  
is a Banach space continuously embedded in Ξ and there 
occurs Cα > 0 satisfying  for t > 0.
	 The following outcomes are special cases of Theorems 
3.1, 3.2 and 3.3. We discuss the case, Fα(t) = Tα(t) for t ≥ 0.

Theorem 4.1 Suppose the facts  (C2), (C3) and (C
ϕ
) are 

fulfilled with ϒ = Ξα,α ∈ (0,1), (Tα(t)t ≥ 0 is compact and 
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  Then there occurs a m-solution of 
(11) on [0,a].

Theorem 4.2 Assume that the status (C4) and (C5) 
are contented with ϒ = Ξα, for some α ∈ (0,1). If  

 then there arises a unique 
m-solution of (11) on [0,a]. 

Theorem 4.3 Consider the condition  (C4)  is verified with 
ϒ = Ξα,  for some  α ∈ (0,1). Assume that the semigroup   
(Tα(t)t ≥ 0 is compact and   Then there 
derives a m- solution of (11) on [0,a]. 

Example 4.4 Consider the equation: 

			 
	
	 (12)

	 It is clear that φ = ψ satisfied conditions  (C4) and 
(C5)  with a constant   Moreover,  
where  B:= C[0,1]; thus K = 1 and consequently  

 Hence in view of Theorem 4.2, 
we conclude that (12) has a unique m-solution.

CONCLUSION

We have shown that there exists a unique mild solution of 
the abstract Cauchy problem, if and only if, there exists 
a unique classical solution of the Cauchy. Therefore, we 
have used the fractional resolvent family in all terms of 
(1)-(2) to establish the unique classical solution.
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