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Asymptotic Properties of the Straight Line Estimator for a Renewal Function
(Sifat Asimptot bagi Penganggar Garis Lurus untuk Fungsi Pembaharuan)

ESRA GÖKPINAR*, TAHIR KHANIYEV & HAMZA GAMGAM

ABSTRACT 

In estimation problems in renewal function, when the distribution is not known, nonparametric estimators of renewal 
function are used. Frees (1986a, Warranty analysis and renewal function estimation, Naval Res. Logist. Quart, 33, 
361-372) proposed the nonparametric estimator of renewal function for large values of t. Frees’s estimator is easy to 
apply in practice. It is a preferred estimator for large values of t. However, its statistical properties still have not been 
investigated in detailed. For this reason, in this study, we investigate asymptotic properties of this estimator such as 
consistency, asymptotic unbiasedness and asymptotic normality. Also Monte Carlo simulation study is given to assess the 
performance of this estimator according to value of renewal function. Simulation results indicate that in the large values 
of t, Frees estimator is sufficiently close to the renewal function for the Gamma distribution with various parameters.
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ABSTRAK 

Masalah anggaran dalam fungsi pembaharuan, apabila pengagihan tidak diketahui, penganggar tidak parametrik fungsi 
pembaharuan digunakan. Frees (1986a, analisis waranti dan anggaran fungsi pembaharuan, Naval Res. Logist. Quart, 
33, 361-372) mencadangkan penganggar tidak parametrik fungsi pembaharuan bagi nilai besar t. Penganggar Frees 
adalah mudah untuk digunakan dalam amalan. Ia penganggar yang diutamakan bagi nilai besar t. Walau bagaimanapun, 
sifat statistiknya masih tidak dikaji dengan lebih mendalam. Untuk alasan ini, dalam kajian ini, kami mengkaji sifat 
asimptot penganggar ini seperti konsistensi, kesaksamaan asimptot dan kenormalan asimptot. Juga kajian simulasi Monte 
Carlo digunakan untuk menilai prestasi penganggar ini mengikut nilai fungsi pembaharuan. Hasil simulasi menunjukkan 
dalam nilai besar t, penganggar Frees hampir dengan fungsi pembaharuan agihan Gama dengan pelbagai parameter.

Kata kunci: Fungsi pembaharuan; kenormalan asimptot; ketaksamaan asimptot; konsisten; penganggar tak parametrik

INTRODUCTION

Renewal processes have a wide range of applications in 
probabilistic models of inventory theory, reliability theory, 
queuing theory and insurance applications. For example, 
in the analysis of most inventory processes it is customary 
to assume that the pattern of demands forms a renewal 
process. Most of the standard inventory policies induce 
renewal sequences, e.g. the times of replenishment of stock. 
In the analysis of most reliability processes, the renewal 
process is frequently used as a model for the reliability of 
a maintained system in which repair restores the system 
to as new condition and repair times are negligible in 
comparison to operating times. Reliability studies often 
interested in the number of failures of the unit over a given 
time interval.
 The renewal function (U (t)) plays an important role in 
investigating of the renewal process (Feller 1971; Karlin & 
Taylor 1975; Ross 1996; Tijms 2003). Knowing the exact 
value of U (t) or at least knowing the approximate value 
of U (t) is helpful to solve a lot of interesting problems. To 
obtain U(t), it is important to know the lifetime distribution, 
F, on the basis data collected from independent identically 
distribution. In many cases, the parametric form of the 

distribution F is not known. Thus, it is desirable to have a 
nonparametric estimator of the renewal function. 
 There are many studies on this topic in the literature. 
Vardi (1982) obtained an algorithm which produced a 
nonparametric maximum likelihood estimation of renewal 
function based on data. Frees (1986a) proposed estimation 
of a straight line approximation of the renewal function 
instead of direct estimation of the renewal function. This 
approximation is depended on a limit expression for 
large values of t. This estimator,  , is easy to apply 
in practice, especially for large values of t. Frees (1986a) 
noted that this estimator is not, in general, statistically 
consistent as the sample size n approaches infinity for small 
values of t. However, for large values of t, its statistical 
properties still have not been investigated in detailed. 
Frees (1986b) also proposed two nonparametric estimators 
based on the sum of the convolution with replacement 
and without replacement of the empirical distribution, 
respectively, especially for small values of t. But, to 
evaluate these estimators, it is needed to the considerable 
amount of computation, especially in the cases of large 
values of t. Unlike Frees’s estimator  , this case is the 
disadvantage of these estimators. 
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 At the same time, Schneider et al. (1990) proposed a 
nonparametric estimator for U(t) and gave a comparison 
of this estimator with Frees’s estimators. Grübel and 
Pitts (1993) introduced a nonparametric estimator based 
on empirical renewal function. Zhao and Rao (1997) 
estimated the renewal function by solving the renewal 
equation, incorporating a kernel estimate of the renewal 
density function. Guedon and Cocozza-Thivent (2003) 
addressed a problem of nonparametric estimation of 
renewal function from count data using Expectation 
Maximization algorithm. Markovich and Krieger (2006) 
gave a nonparametric estimator by using the bootstrap 
method. Also Bebbington et al. (2007) proposed estimator 
of the renewal function when the second moment is infinite. 
They developed confidence bands for the renewal and 
related functions. 
 In this study, we investigate statistical properties 
of Frees’s estimator such as consistency, asymptotic 
unbiasedness and asymptotic normality. So this article is 
organized as follows. In the next section, the renewal process 
and renewal function are defined and Frees’s estimator is 
presented. In the section that follows, we investigate its 
statistical properties. After that, Monte Carlo simulation 
study is given to assess the performance of this estimator 
according to value of U(t) under Gamma distribution. 
Concluding remarks are summarized in the final section.

NONPARAMETRIC ESTIMATOR OF RENEWAL FUNCTION

In this section the nonparametric estimator of the renewal 
function given in Frees (1986a) is described. Let us give 
the definition of the renewal process and renewal function 
before we introduce the estimation. 

Definition 2.1 Let {Xn, n=1, 2,…} be a sequence of 
independent and identically distributed positive valued 
random variables with distribution function F. Assume 
that F has mean µ and finite variance σ2. Mathematical 
construction of the renewal process is defined as follows: 

 N(t)=inf{n≥1; Tn >t} for t≥0.

 Here Tn =  Xi, n = 1, 2, … and T0=0 are the arrival 
times or renewal sequence (Feller 1971). 

Definition 2.2 The renewal function U(t) is the expected 
number of renewals in an interval (0, t). In other words, 
U(t) is defined as follows:

 

where Fn*(t) denotes the n-fold convolution of F. When F is 
non-arithmetic distribution (i.e. the distribution function F 
is called non-aritmetic if the mass of F is not concentrated 
on a discrete set of points 0, λ, 2λ,... for some λ>0) and 

 U(t) can be approximated for large values of t 
as U(t) = Ua(t) + o(1).

 Here Ua(t) = t/μ1 + μ2/  and µi (i=1, 2,..) is ith 
moment of the distribution F (Feller 1971), i.e., μ1 = E

 
(i=1, 2,…). By using this expression, Frees (1986a) 

defined a nonparametric estimator of U(t) given as:

 

w h e r e   a n d   a r e 
estimators of µ1 and µ2 based on the random sample X1, X2,…, 
Xn. The estimator given in (2.1) is called Frees’s estimator. 

Remark Frees’s estimator given in (2.1) is not, in general, 
statistically consistent as the sample size n approaches 
infinity for small values of t (Frees 1986a). However, for 
large values of t, its statistical properties still have not been 
investigated such as consistency, asymptotic unbiasedness 
and asymptotic normality. Aydoğdu (1997) investigated 
that  estimator is an asymptotic unbiased estimator 
of U(t) for only Gamma distribution and large values of 
t. In this study, statistical properties of this estimator in 
(2.1) are investigated for a large class including Gamma 
distribution when large values of t.

ASYMPTOTIC PROPERTIES OF FREES’S ESTIMATOR

In this section, we investigate some important statistical 
properties of Frees’s estimator   given in (2.1) for 
Ua(t) = t/μ1 + μ2/  for each fixed t. After that we show 
that  converges U(t) for large values of t. Let us 
first investigate the unbiasedness of this estimator. We 
can prove that  estimator is an asymptotic unbiased 
estimator for fixed t.

Theorem 3.1 Suppose that , then

 

holds, that is,  is asymptotic unbiased estimator of 
Ua(t) for each fixed t.

Proof Let us first find the Taylor expansion of  at µ1 
and µ2

 

where  is the remainder term. To obtain the expected 
value of , firstly we need to prove that the expected 
value of  goes to zero as n→∞. It is provided in the 
Appendix A. Then, the expected value of remainder term 

 goes to zero as n→∞ and the expected value of  
could be given as shown:
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Here "≅" means asymptotically equivalency. It is seen that 
E(  – μ1) = 0, E(  – μ2) = 0,  and E((  – μ1)

2) =  = σ2/n. 
Moreover,  E((  – μ2)(  – μ2)) = Cov( , ) = (μ3 – μ1μ2)/n 
is derived from Appendix B. So  is obtained as below:

 

For fixed t, we have the bias of   as follows:

  

 
 Recall that µ1>0, µ3<∞ and t<∞, so

 
 →0 as 

n→∞. Hence, 

 

holds. That is, it is seen that  is asymptotic unbiased 
estimator of Ua(t) for each fixed t. 
 Let us show this result on an example, when X1, X2,…, 
Xn are a random sample from Gamma distribution. 

Example 3.1 Consider that X1, X2,…, Xn be independent 
and identically distributed random variables with Gamma 
distribution with parameter α>0, β>0, i.e. probability 
density function (pdf) is f (x;α,β) = xα–1exp(–x/β)/Γ(α)βα, 
x > 0,  First and second moments are as follows µ1=αβ 
and µ2=α(α+1)β2. So U(t) and   can be represented 
as follows:

 

 The expected value of the estimation  = t/  + 
/2( )2 could be given as follows:

  (3.5)

 It is known that  ~Gamma(nα, β) and 
 Xi ~ Beta(α,(n–1)α) 

 
(Hoog et al. 2005). 

 pdf of the Beta distribution with (α, β) is  f (z; α, β) = 
zα–1 (1– z)β–1Γ(α+β)/Γ(α)Γ(β); α, β > 0, 0 < z < 1. So Eq. 
(3.5) can be rewritten as follows: 

  (3.6)

 We need to find E(1/Y) and  to obtain 

 
given in (3.6). So, 

 

 

 

 Here fY(y) and fZ(z) are the pdf of random variables 
Y and Zk, respectively. Therefore, the  is given as 
follows:

 

 For fixed t, we have the bias of  which is as 
follows:

 
 

 Therefore,  →0 for fixed t as n→∞, that is,  
 is an asymptotic unbiased estimator of Ua(t). 

 We need to obtain the variance of   before show 
that   is a consistent for Ua(t) for each fixed t. So 
Lemma 3.1 gives the variance of  .

Lemma 3.1 Suppose that Then, the variance of  can 
be represented as follows as n→∞

 

where 
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Here µk and σ2 are kth moment and variance of 
distribution F, respectively.

Proof It is known that

  (3.7)

 The first term in (3.7) is calculated by obtaining Taylor 
expansion of the each terms at µ1 and µ2 (see Appendix B 
for details) given as

 
 (3.8)

 The second term given in (3.7) is the square of the term 
given in (3.3). Hence,  term is given as:

 

 
 (3.9)

 Consequently, the variance of  , by using the result 
shown in (3.8) and (3.9), is given by

  (3.10)

where 

 

 

This completes the proof. 

Corollary. 3.2 It can be shown that |B|<∞, when µ4<∞. 
Therefore, for fixed t, 

  as n→∞.  (3.11)

 Now we can give the consistent estimator of Ua(t) as 
given in Lemma 3.2 and Theorem 3.2.

Lemma 3.2 Suppose that  Then,  is a 
consistent estimator of Ua(t) where Ua(t) = t/μ1 + μ2/  

Proof Recall that  To show that  
is a consistent estimator of Ua(t), we need to prove 
that  It is well known that  
from Chebyshev inequality. Thus, we need to show 
that 

 
 = 0

.
It is seen that Bias(  

in (3.4) and   Var(  in (3.11),  = 
 That is,   is a 

consistent estimator for Ua(t) for large values of t. 
 Now we can show that   converges U(t) for large 
values of t.

Theorem 3.2 If  and  then 
 

Proof It is known that

 
 
 We have   from Lemma 3.2. 
It is possible to find a number of t0>0 for ∀t > t0 so that 

 and  t > t0. If En 
and Fn are two sequences of events, then  

 implies   (Lemma 2.1.2 
in Lehmann 1998). 
Hence,

 

therefore  that is,   U(t) 
for large values of t. 

Remark Since   U(t), then   is a consistent and 
asymptotic unbiased estimator of U(t)  for large values of t.
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 To show asymptotic normality of the estimator  , 
first we need to follow Lemma 3.3 and Lemma 3.4.

Lemma 3.3 (Univariate Delta Method, Casella & Berger 
2002) Let Yn be a sequence of random variables with mean 
µ and variance σ2 that satisfies  For 
a given function g(Yn) and specific value of µ, supposed 
that g'(µ) exists and is not 0. Then, 

 

Lemma 3.4 (Multivariate Delta Method, Casella & 
Berger 2002) Define the random vector Y=(Y1,...,Yr) 
with mean µ=(µ1,...,µr) and covariance Cov(Yi, Yj) = σij. 
Let Y(1),...,Y(n) be a random samples of the population 
Y and  i=1,...,r be the sum of observation 
for each variable. For a given function g(Y) with 
continues first partial derivatives and a specific value of 
µ=(µ1,...,µr) for which  Then 

 Here g'i(μ) = 
∂g(μ1,…,μr)/∂μi (i=1,…r). Now we can give asymptotic 
normality of the estimator  .

Theorem 3.3 Suppose that  then  is 
asymptotically normal, that is,  
where    Here 

µk and σ2 are kth moment and variance of distribution F.

Proof Firstly, we investigate the asymptotic distribution 
of first term t/  in (2.1) from Lemma 3.3. Let Yn =  be 
a sequence of random variables that satisfies  According 
to Lemma 3.3, the given function is g(Yn) = t/Yn and 
g'(μ1) exists such that g’(μ1) = –t/  for Yn >0. Then 

 Using the same way, we investigate the asymptotic 
distribution of second term ( 2/2( )2) in (2.1) from Lemma 
3.4. Let x =  and y = 2 with mean  E( ) = μ1 and E( 2) 
= μ2

 

and covariance Cov( , 2) = (μ2 – μ1μ2)/n. The first 
partial derivatives of  g(x,y) = y/2x2 are ∂g(x,y)/∂x = –y/x3 
and ∂g(x,y)/∂y = 1/2x2. 

Then, from Lemma 3.4. 

 

where

 
  

 By applying Slutsky theorem (Lehmann 1998), we 
have that

 
 
where

 
 

This completes the proof. 
 As a result, it is shown that  is consistent, 
asymptotic unbiased and asymptotically normal estimator 
of U(t) for large values of t.

SIMULATION

In this section, a Monte Carlo simulation study is given 
to assess the performance of the estimator  according 
to value of U(t). We investigate the effect of the different 
values of n and t. The following values t ∈ (5, 15, 25, 
50) are used for n ∈ (5, 10, 15, 20, 30, 50, 100). We 
generate samples with the known pdf of a Gamma 
distribution (f (x, α, β) = xα–1exp(–x/β)/Γ(α)βα) with the 
parameters (1, 1), (2, 1) and (3, 1). In Tables 1-3 one can 
see the performance of the estimator  calculated 
by 10000 repeated samples from the given distribution 
by using MATLAB program.  denotes Monte 
Carlo estimation of expected value of . In addition, 

 
and AP=1- d denote the 

relative error and accuracy percentage between the U(t) 
and , respectively. 

 Here U(t) = t + 1. 

 Here U(t) = t/2 + 3/4 + (1/4)exp(–2t). 

 Here  U(t) = t/3 + 2/3 + (2 /9)exp(–3t/2)cos( t/2 
– π/6).
 In Table 1, APs between the U(t) and   increase 
quickly as n increases for each t under the Gamma (1, 1) 
distribution. For example, in all cases, APs are greater 
than 90% when n=15. It is also seen that AP is negatively 
affected by the large value of t for small n. For example, 
while AP is 81.82% for n=5 and t=5, AP is 75.65% for n=5 
and t=50. However, this case improves as n increases.
 As seen from Table 2, APs increase as n increases for 
each t. It is observed that the APs between the U(t) and  

 are positively affected by that α parameter of 
Gamma distribution increases. For example, for n=5 and 
t=50, AP is 89.582% in Table 2 while it is 76.53% in Table 
1. Moreover, in Table 3 it is observed that this result is 
similarly obtained. For example, for n=5 and t=50, AP is 
93.307% in Table 3 while it is 89.582% in Table 2.

CONCLUSION

Estimation problems in renewal function have been studied 
by many authors. When the shape of the distribution cannot 
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TABLE 2. A comparison of the values of  and U(t) for Gamma (2,1) distribution

t U(t) n  δ(%) AP t U(t) n  δ(%) AP

5 3,250011

5
10
15
20
30
50
100

3,461
3,350
3,311
3,295
3,279
3,268
3,259

6,480
3,078
1,880
1,399
0,897
0,557
0,266

93,520
96,922
98,120
98,601
99,103
99,443
99,734

25 13,25

5
10
15
20
30
50
100

14,546
13,869
13,655
13,551
13,443
13,366
13,306

9,782
4,672
3,056
2,275
1,456
0,872
0,423

90,218
95,328
96,944
97,725
98,544
99,128
99,577

15 8,25

5
10
15
20
30
50
100

9,026
8,597
8,481
8,425
8,369
8,316
8,286

9,401
4,203
2,800
2,117
1,442
0,800
0,430

90,599
95,797
97,200
97,883
98,558
99,200
99,570

50 25,75

5
10
15
20
30
50
100

28,433
27,026
26,584
26,374
26,154
26,005
25,875

10,418
4,954
3,238
2,425
1,568
0,991
0,487

89,582
95,046
96,762
97,575
98,432
99,009
99,513

TABLE 3. A comparison of the values of  and U(t) for Gamma (3,1) distribution

t U(t) n  δ(%) AP t U(t) n  δ(%) AP

5 2,333166

5
10
15
20
30
50
100

2,411
2,370
2,357
2,350
2,345
2,340
2,337

3,328
1,568
1,030
0,737
0,512
0,305
0,149

96,672
98,432
98,970
99,263
99,488
99,695
99,851

25 9,00

5
10
15
20
30
50
100

9,554
9,273
9,176
9,131
9,087
9,049
9,024

6,159
3,030
1,959
1,460
0,967
0,540
0,268

93,841
96,970
98,041
98,540
99,033
99,460
99,732

15 5,666667

5
10
15
20
30
50
100

5,982
5,821
5,767
5,741
5,715
5,695
5,682

5,561
2,729
1,766
1,305
0,861
0,503
0,269

94,439
97,271
98,234
98,695
99,139
99,497
99,731

50 17,33333

5
10
15
20
30
50
100

18,494
17,891
17,693
17,598
17,502
17,444
17,392

6,693
3,216
2,077
1,526
0,975
0,639
0,336

93,307
96,784
97,923
98,474
99,025
99,361
99,664

TABLE 1. A comparison of the values of  and U(t) for Gamma (1,1) distribution

t U(t) n δ(%) AP t U(t) n δ(%) AP

5 6,00

5
10
15
20
30
50
100

7,09
6,47
6,30
6,22
6,14
6,08
6,04

18,18
7,88
5,02
3,61
2,37
1,29
0,71

81,82
92,12
94,98
96,39
97,63
98,71
99,29

25 26,00

5
10
15
20
30
50
100

32,10
28,71
27,75
27,28
26,81
26,49
26,24

23,47
10,44
6,72
4,92
3,11
1,88
0,92

76,53
89,56
93,28
95,08
96,89
98,12
99,08

15 16,00

5
10
15
20
30
50
100

19,55
17,59
17,00
16,75
16,51
16,29
16,13

22,20
9,92
6,22
4,67
3,21
1,82
0,84

77,80
90,08
93,78
95,33
96,79
98,18
99,16

50 51,00

5
10
15
20
30
50
100

63,42
56,41
54,52
53,61
52,62
51,97
51,47

24,35
10,61
6,90
5,11
3,17
1,91
0,92

75,65
89,39
93,10
94,89
96,83
98,09
99,08
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be assumed to be known, nonparametric estimators of 
renewal function are used. However, most of them are 
not easy to apply in practice, especially for large values 
of t. Because of the simplicity of Frees’s estimator , 
it can be used easily in practice. Consequently,  is the 
preferred estimator for large value of t. So in present work, 
we investigated statistical properties of Frees’s estimator 

. In fact, it can be important to prove asymptotic 
properties of this estimator when use in stochastic models 
including the complicated function associated with renewal 
function, for example inventory model of type (s, S). This 
model has been extensively considered in recent years 
(Khaniyev & Atalay 2010; Khaniev & Mammadova 
2006; Khaniyev et al. 2013). We proved the asymptotic 
properties of Frees’s estimator  such as consistency, 
asymptotic unbiasedness and asymptotic normality. In 
simulation study, it is observed that according to values 
of t and n, 

  
are sufficiently close to the U(t) for 

Gamma distribution with various parameters. 
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APPENDIX A

The expected value of the remainder term  goes to zero as n→∞. To show this, initially, we need to obtain Lagrange 
form of the remainder term  as follows:

 

where 0<θ<1. According to the law of large numbers,   and  , then n can be chosen so large that  
 and   where 0<θ1<1 and 0<θ2<1. We have inequality as shown below:

  and 
 

So we obtain the upper bound of | | as follows:

 

2

δ1 (0<δ1<1) is chosen so small that let |μ2 – (θδ1/2)|≥μ1/2. 
 
Therefore,

 

δ2 (0<δ2<1) is chosen so small that let θδ2/2 ≤ μ2. Therefore,

 
 
Let max(δ1; δ2) = δ, in this case

 

and with respect to δ3 < δ2,

 

 Recall that 0<µ1<∞ and 0<µ2<∞, so it is seen that (32μ2 + 2tμ1 + μ1)  = c < ∞. For each δ∈(0,1), n can be chosen 
so large that   with probability 1. It is known that if X1≤ X2 in probability 1, then E(X1) ≤ E(X2) (Roussas 1997). 
So, for each δ∈(0,1),

 

Therefore, for each δ∈(0,1),  E  →0 as n→∞. 
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APPENDIX B

To show unbiasedness properties of this estimator, we first need to prove following Proposition B.1 about the covariance 
between   and .

Proposition B.1. Let X1, X2,…, Xn be independent and identically distributed random variables with distribution function 
F and µi (i=1, 2,...) are ith moment of the distribution.  (k=1, 2,...) and  (m=1, 2,…) are kth 
and mth sample moment, respectively. So the covariance between   and  can be given as 

 
Proof The covariance between  and  is obtained as follows

  (B.1) 

Here 
 
term is obtained as 

 

So (B.1) could be written as 

 

This completes the proof. 

Corollary B.1 The covariance between  and  can be given as 

 Cov  = (μ3 – μ1μ2)/n.

Remark As seen from Corollary B.1   when µ3 <∞. This result showed that  and  are asymptotically 
uncorrelated. 
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APPENDIX C

 term is rewritten as follows:- 

  (C.1)

 Initially, we need to obtain the Taylor expansion of each term at µ1 and µ2 in (C.1). For first term in (C.1), we have 
the following result:

 

 According to the law of large numbers,  and   by using the same way given in Appendix A, it 
can be shown that the expected value of the remainder term goes to zero as n→∞. Therefore,

 

 

Here   and  Hence

 (C.2)
  

For second term in (C.1), we have the following result

 

According to law of large numbers,  and  therefore, 

 

Here   and from Corollary B.1 we have  Then,

 (C.3)
 
 
For third term in (C.1), we have the following result
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According to the law of large numbers,  and  therefore,

    (C.4)

Here  term is found as follows:-

 

 

In this case,

  (C.5)

By using the result given in (C. 5), we can rewrite (C. 4) as follows: 

  (C.6)
 

So, substituting the results given in (C.2), (C.5) and (C.6) in (C.1) is obtained:

 


