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A Study on the S2-EWMA Chart for Monitoring the Process Variance 
based on the MRL Performance

 (Suatu Kajian Carta S2-EWMA bagi Memantau Varians Proses Berdasarkan Prestasi MRL)

TEH SIN YIN*, KHOO MICHAEL BOON CHONG, ONG KER HSIN, SOH KENG LIN & TEOH WEI LIN

ABSTRACT

The existing optimal design of the fixed sampling interval S2-EWMA control chart to monitor the sample variance of a 
process is based on the average run length (ARL) criterion. Since the shape of the run length distribution changes with 
the magnitude of the shift in the variance, the median run length (MRL) gives a more meaningful explanation about the 
in-control and out-of-control performances of a control chart. This paper proposes the optimal design of the S2-EWMA 
chart, based on the MRL. The Markov chain technique is employed to compute the MRLs. The performances of the S2-
EWMA chart, double sampling (DS) S2 chart and S chart are evaluated and compared. The MRL results indicated that the 
S2-EWMA chart gives better performance for detecting small and moderate variance shifts, while maintaining almost 
the same sensitivity as the DS S2 and S charts toward large variance shifts, especially when the sample size increases.

Keywords: Exponentially weighted moving average (EWMA); Markov chain; median run length (MRL); sample variance

ABSTRAK

Reka bentuk optimum carta kawalan EWMA-S2 selang pensampelan tetap yang digunakan untuk memantau proses sampel 
varians adalah berdasarkan kriteria panjang larian purata (ARL). Oleh sebab bentuk taburan panjang larian berubah 
dengan magnitud anjakan dalam varians, maka panjang larian median (MRL) memberi penjelasan yang lebih bermakna 
tentang prestasi terkawal dan luar kawalan carta kawalan. Kertas kerja ini mencadangkan reka bentuk optimum untuk 
carta EWMA-S2 berdasarkan MRL. Teknik rantai Markov digunakan untuk mengira MRL. Prestasi carta-carta EWMA-S2, DS 
S2 dan S telah dinilai dan dibandingkan. Keputusan MRL menunjukkan bahawa carta EWMA-S2 memberikan prestasi yang 
lebih baik untuk mengesan anjakan varians yang kecil dan sederhana di samping mengekalkan kepekaan yang hampir 
sama dengan carta-carta DS S2 dan S terhadap anjakan varians yang besar, terutamanya apabila saiz sampel meningkat. 

Kata kunci: Panjang larian median; purata bergerak berpemberat eksponen (EWMA); rantai Markov; varians sampel

INTRODUCTION

Control charts are the core tools in the application of 
statistical process control (SPC) to determine whether a 
process is in statistical control. As different processes 
require different methods of monitoring, different kinds of 
control charts have been developed by researchers. Roberts 
(1959) was the first person to introduce the exponentially 
weighted moving average (EWMA) control chart and since 
then, the EWMA control chart has been well accepted and 
widely used by practitioners. The EWMA chart is good for 
detecting small process shifts (Razmy & Peiris 2013).
 To date, there are many extensions on the EWMA 
chart and the more important ones are briefly discussed 
as follows:
 In order to improve the properties and design strategies 
of the EWMA chart for the process mean, Simões et al. 
(2010) optimized the designs of the EWMA chart with a 
variable smoothing constant (AEWMA) with regards to 
pairs of shifts in the process mean. In the same year, Li 
et al. (2010) introduced the nonparametric EWMA chart 
for detecting mean shifts. A new nonparametric EWMA 
sign control chart was proposed by Yang et al. (2011) 

for monitoring and detecting possible deviations from 
the process target. In addition, a nonparametric EWMA 
signed-rank chart was developed by Graham et al. (2011) 
for monitoring the process location.
 The number of defective units increase with the 
increase of the process variance as, it is crucial to monitor 
changes in the process variance. Thus, a lot of effort 
has been put in to design EWMA charts for monitoring 
the process dispersion. Chang and Gan (1994) designed 
the one-sided optimal EWMA chart to monitor process 
variance. Castagliola (2005) proposed the fixed sample 
size and sampling interval (FSSI) S2-EWMA control chart 
to monitor the sample variance of a process. Later on, 
an extension on the FSSI S2-EWMA chart, i.e. the variable 
sampling interval (VSI) S2-EWMA chart was developed by 
Castagliola et al. (2007). Castagliola et al. (2008) discussed 
the construction of a variable sample size (VSS) version of 
the static FSSI S2-EWMA chart to monitor the stability of 
the process dispersion. Eyvazian et al. (2008) proposed 
an exponentially weighted moving sample variance chart 
to monitor process variance when the sample size is one. 
Shu (2008) extended the adaptive EWMA chart for process 
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location to monitor the process dispersion. Razmy and 
Peiris (2013) designed the EWMA chart for monitoring 
standardized process variance.
 The performance of control charts for monitoring a 
process in most previous studies is usually measured using 
the average run length (ARL) because of the following 
reasons: The derivation of the run length distribution 
is particularly hard in most cases and the in-control run 
length distribution is approximately geometric, therefore 
it can be approximately characterized by the ARL (Gan 
1992). The ARL is defined as the average (expected) 
number of sample points that must be plotted on the 
chart before the first out-of-control signal is detected 
(Montgomery 2009). In other words, ARL is a measure 
of the speed of a chart in detecting the occurrence of 
assignable causes. 
 However, interpretation based on the ARL can 
be misleading (Gan 1993a) as the in-control run 
length distribution of a EWMA chart is highly skewed. 
Furthermore, the shape of the run length distribution 
changes with the magnitude of the shift in the variance. 
This fact is further supported by the findings in Teoh and 
Khoo (2012) who reported on the skewness of the run 
length distribution changes with the size of the process 
mean shifts. Therefore, the median run length (MRL) 
actually gives a more meaningful explanation about the 
in-control and out-of-control performances of a control 
chart compared to the ARL (Gan 1994, 1993a). For a 
run length distribution which changes from a highly 
skewed distribution when the shift is small to an almost 
symmetric distribution when the shift is large, the MRL 
is more readily understood by practitioners. In contrast, 
interpretation based on the ARL could be misleading. 
 The MRL is defined as the median number of sample 
points that must be plotted on the chart before the first 
out-of-control signal is issued. In other words, the MRL 
is the 50th percentage point of the run length distribution. 
Chakraborti (2007), Gan (1993a), Radson and Boyd 
(2005) and Thaga (2003) to name a few, have all criticized 
the use of ARL as a sole measure of the performance of 
a chart as it is insufficient. Furthermore, Di Bucchianico 
et al. (2005) also commented that when the run length 
distribution is highly skewed, it is less meaningful to 
judge the performance of a control chart by considering 
its ARL only. 
 The FSSI S2-EWMA chart proposed by Castagliola 
(2005) is optimally designed based on the ARL. Gan 
(1994) noted that a better understanding of a control 
chart via the use of MRL helps to increase the confidence 
of quality control practitioners and engineers. The main 
contributions of this work are to present a procedure to 
optimally design the FSSI S2-EWMA chart of Castagliola 
(2005), using the MRL criterion as described in Gan (1994, 
1993a & 1993b) and to develop a SAS program to compute 
the optimal parameters of the chart. 
 The layout of this paper is as follows: The next 
section introduces the FSSI S2-EWMA chart and followed 
by the optimal design of the chart based on MRL is 

presented in the section that follows. Next is the study 
and comparison of the MRL performances of the S2-EWMA, 
double sampling (DS) S2 and S charts. Conclusions and 
suggestions for future works are drawn in last section. 
The Markov chain approach employed to compute the 
MRL of the S2-EWMA chart is discussed in the Appendix.

THE S2-EWMA CONTROL CHART

Let Xk,1, Xk,2, …, Xk,n be a sample of n independent random 
variables, having a normal N (μ, σ0

2)  distribution, where 
μ is the process mean, σ0 is the nominal process standard 
deviation and k is the sample number. As the S2-EWMA chart 
is used to monitor the process dispersion, an out-of-control 
occurs when the standard deviation shifts from σ0 to σ1, 
where the magnitude of this shift is measured through the 
parameter  while the mean remains at its nominal 
value μ. In this paper, σ0 is assumed to be known. Let Sk

2 

be the variance of sample k, i.e.
        
 Sk

2  =  (1)

where  is the mean of sample k. In order to monitor the 
process variance, Castagliola (2005) suggested to apply 
the following transformation on  Sk

2, i.e.

 Tk =    a + b ln(Sk
2  + c), (2)

where a, b and c > 0 (in order to avoid problems with the 
logarithmic transformation) are three constants and then, 
to use the classical EWMA approach on the Tk statistic, i.e. 
 
 Zk = (1 – λ)Zk–1 + λTk, (3)

where λ is a smoothing constant satisfying 0 < λ ≤ 1. The 
main motivation of this method is that if the constants 
a, b and c are judiciously selected, then the distribution 
of  Tk will be quasi-symmetrical and will look like a 
standard normal distribution. The control limits of the S2-
EWMA control chart (corresponding to the Zk statistic) are 
(Castagliola 2005)

 LCL = E(Tk) – K ×  (4)

and

 UCL = E(Tk) + K ×  (5)

where K is a positive constant,  E(Tk) and σ(Tk) are 
the theoretical mean and standard deviation of Tk. The 
constants a, b and c are equal to (Castagliola 2005)

 b = B(n), (6)

 c = C(n)σ0
2, (7)

and
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 a = A(n) – 2B(n)ln(σ0), (8)

where A(n), B(n) and C(n) are three functions depending 
only on the sample size n. The closed forms of these 
functions are shown in Castagliola (2005). The probability 
density function (pdf)  of Tk whose distribution 
depends only on n, derived by Castagliola (2005) is 

  (9)

where fG is the pdf of a gamma distribution with 
parameters 

 
and . This  pdf is important 

since it allows the calculation of the values of  E(Tk) and 
σ(Tk) independently of the value of σ0. The computation 
of E(Tk) and σ(Tk) was obtained by Castagliola (2005) via 
numerical quadrature. Note that the values of E(Tk) are 
very close to zero. In fact, these values are so close to zero 
that assuming  E(Tk) = 0  is a very good approximation. 
Castagliola (2005) has also shown that a reasonable value 
of Z0 can be obtained through

 Z0 = A(n) + B(n)ln[1 + C(n)]. (10)

 As it can be noticed, Z0 depends only on n and not on 
σ0. Note that the value of Z0 is also close to zero and it can 
be replaced by zero in practice with little practical effect.
 Castagliola (2005) showed that the derivative of Tk  
has the distribution of the transformed random variable  
τ2S2 with pdf 

  (11)

 
 For this reason, the distribution  of  depends 
only on n and τ. 

OPTIMAL DESIGN OF THE S2-EWMA CHART

The optimal parameters of the S2-EWMA chart are 
computed using the Markov chain approach presented 
in the Appendix. A chart is optimal in detecting a shift 
if it yields the smallest possible out-of-control MRL 
(MRL1), for a specified value of the shift in the process 
variance,  More than one optimal parameter 

combination may exist, for a shift τ because the MRL is a 

discrete integer. For this situation, the (λ, K) combination 
corresponding to the smallest λ, of all optimal λ’s in the 
range [a, b], where 0.050 ≤ a < b ≤ 1, is chosen as the 
optimal parameter combination.

 The following steps are recommended in an optimal 
design of the S2-EWMA chart for detecting shifts in the 
process variance:

Step 1. Choose the desired in-control MRL (MRL0) value 
and the sample size, n. For an equal footing 
comparison with Castagliola’s (2005) study, 
MRL0 = 370 (corresponding to the classical ±3σ  
limits for a control chart) and MRL0 = 200 (also 
considered by Crowder & Hamilton 1992), while 
n = 3, 5, 7 and 9 are considered.

Step 2. Initialize λ = 0.050. Note that smaller values 
of λ (i.e. λ < 0.050) causes numerical difficulty 
in evaluating the MRLs. This setback was also 
pointed out by Crowder and Hamilton (1992) for 
the ARL case. 

Step 3. Decide on the desired magnitude of a shift in the 
process variance, denoted by τ, for which a quick 
detection is required.

Step 4. When the process is in-control and operates at the 
nominal variance (i.e. σ1 = σ0) or equivalently τ 
= 1, determine the value of K, in computing LCL 
and UCL in (4) and (5), respectively, so that the 
MRL0 value in Step 1 is satisfied, for a particular 
combination of (λ, K). Repeat the process of 
finding suitable values of K to attain the desired 
MRL0, for the λ values of 0.051, 0.052, …, 
1. Thus, there are 951 (λ, K) combinations 
considered for the S2-EWMA chart. 

Step 5. Compute the MRL1 values for all the combinations 
of (λ, K) in Step 4, based on the τ value specified 
in Step 3.

Step 6. Identify the (λ*, K*) combination having the 
lowest MRL1 value as the optimal parameter 
combination. Then the optimal (λ*, K*) 
combination satisfies the constraints in (12) and 
(13).

        
 MRL(1, λ*, K*, n, t) = MRL0. (12)

 MRL(τ, λ*, K*, n, t) =  MRL(τ, λ, K, n, t). (13)

 A program is written in the Statistical Analysis 
Software (SAS) version 9.1.3, incorporating the above 
6-steps procedure to compute the optimal (λ*, K*) 
combination. The program is available upon request from 
the first author. Tables 1 and 2 in the following section 
present the computed optimal (λ*, K*) combinations for 
the S2-EWMA chart, for n∈{3, 5, 7, 9} and ARL0 ∈ {200, 
370}. The optimal parameters for the S2-EWMA chart are 
obtained via the Markov chain approach. 

MRL PERFORMANCE COMPARISON

Tables 1 and 2 provide the optimal (λ*, K*) combinations 
and the corresponding minimum MRL1s, for process 
variance shift τ∈(0.5, 2) and n∈{3, 5, 7, 9}. Table 1 
corresponds to MRL0 = 370 while Table 2 corresponds to 
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MRL0 = 200. Tables 1 and 2 help practitioners to make a 
quick selection of the optimal parameters. For example, 
if a practitioner desires to construct a S2-EWMA chart that 
is optimal for a process variance shift of τ = 0.5 (σ0 has 
decreased by 50%, i.e. a process improvement), when n = 
3 and MRL0 = 370, the associated optimal combination of 
parameters is (λ* = 0.090, K* = 2.807) 

 
and the minimum 

MRL1 for this shift is 13. Similarly, for τ = 1.5 (σ0 has 
increased by 50%), when n = 5 and MRL0 = 200, the 
corresponding optimal combination of parameters is (λ* 
= 0.050,  K* = 2.545)  and the minimum MRL1 is 4. As 
illustrated in Tables 1 and 2, generally, smaller values of λ 
are more likely to be optimal in detecting shifts (even for 
large shifts) in the process variance. Tables 1 and 2 also 
indicate that the smoothing constant λ = 0.050 seems to 
be a good choice to obtain the minimum MRL1 in most of 

TABLE 1. S2-EWMA Chart - Optimal (λ*, K*) combinations and the corresponding 
minimum MRL1s, for n = 3, 5, 7, 9 and MRL0 = 370

τ
n = 3 n = 5 n = 7 n = 9

λ* K* MRL* λ* K* MRL* λ* K* MRL* λ* K* MRL*
0.5
0.6
0.7
0.8
0.9
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

0.090
0.081
0.071
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050

2.807
2.786
2.760
2.697
2.697
2.697
2.697
2.697
2.697
2.697
2.697
2.697
2.697
2.697
2.697

13
18
28
53
151
49
16
9
7
5
4
4
3
3
3

0.157
0.110
0.088
0.081
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.175
0.050
0.280
0.177

3.041
2.985
2.934
2.920
2.799
2.799
2.799
2.799
2.799
2.799
2.799
3.054
2.799
3.086
3.055

6
9
14
25
68
42
15
9
6
5
4
3
3
2
2

0.201
0.142
0.147
0.076
0.050
0.050
0.050
0.050
0.143
0.092
0.150
0.387
0.214
0.126
0.745

3.135
3.090
3.095
2.959
2.844
2.844
2.844
2.844
3.091
3.005
3.099
3.152
3.141
3.070
3.085

4
6
9
18
48
35
13
8
5
4
3
2
2
2
1

0.248
0.339
0.155
0.087
0.050
0.050
0.050
0.273
0.214
0.210
0.430
0.212
0.118
0.626
0.455

3.191
3.202
3.136
3.019
2.864
2.864
2.864
3.196
3.178
3.176
3.195
3.177
3.087
3.155
3.191

3
4
7
14
39
30
11
6
4
3
2
2
2
1
1

TABLE 2. S2-EWMA Chart - Optimal (λ*, K*) combinations and the corresponding 
minimum MRL1s, for n = 3, 5, 7, 9 and MRL0 = 200

τ
n = 3 n = 5 n = 7 n = 9

λ* K* MRL* λ* K* MRL* λ* K* MRL* λ* K* MRL*
0.5
0.6
0.7
0.8
0.9
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

0.110
0.116
0.076
0.057
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050

2.603
2.632
2.552
2.502
2.495
2.495
2.495
2.495
2.495
2.495
2.495
2.495
2.495
2.495
2.495

12
15
24
44
110
30
11
7
5
4
3
3
3
2
2

0.215
0.115
0.103
0.072
0.050
0.050
0.050
0.050
0.050
0.050
0.257
0.050
0.320
0.176
0.050

2.865
2.763
2.738
2.646
2.545
2.545
2.545
2.545
2.545
2.545
2.883
2.545
2.893
2.843
2.545

6
8
12
22
55
30
12
7
5
4
3
3
2
2
2

0.156
0.189
0.144
0.097
0.050
0.050
0.050
0.050
0.250
0.273
0.050
0.200
0.127
0.050
0.569

2.881
2.913
2.865
2.773
2.574
2.574
2.574
2.574
2.948
2.955
2.574
2.922
2.839
2.574
2.941

4
5
8
15
40
26
10
6
5
3
3
3
2
2
1

0.189
0.190
0.197
0.098
0.070
0.050
0.050
0.050
0.050
0.102
0.293
0.134
0.764
0.500
0.366

2.945
2.946
2.951
2.799
2.699
2.587
2.587
2.587
2.587
2.810
2.998
2.877
2.958
3.003
3.009

3
4
6
12
31
23
9
6
4
3
2
2
1
1
1

   

FIGURE 1. A graphical view of the DS S2 chart
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the cases. The accuracies of all the entries in Tables 1 and 
2 have been verified with simulation using SAS. 
 The DS S2 chart allows a quick detection of small 
process shifts while the traditional S chart is capable of 
detecting large process shifts quickly (He & Grigoryan 
2003; Khoo 2004). The S2-EWMA chart is compared with 
both the DS S2 chart and the S chart, where MRL0 = 200 and 
370, τ ∈ (0.5, 2) and n = {3, 5, 7, 9} are considered. Note 
that instead of a fixed sample size, n, the DS S2 chart uses 
the average sample size (ASS) due to its adaptive feature. 
The design of the DS S2 chart depends on eight parameters, 
i.e. the sizes of the first and second samples (n1 and n2), 
limits associated with the first sample (L1, L2, L3 and L4) 
and limits associated with the second sample (L5 and L6), 
as shown in Figure 1. There are three possibilities after 
the first sample is taken, i.e. the process is in-control if 
the variance of the first sample S1

2 ∈ (L2, L3); the process 
is out-of-control if S1

2 ∈ [(0, L1) ∪ (L
4
, ∞)]; and a second 

sample is taken if S1
2 ∈ [(L1, L2) ∪ (L3, L4)]. The MRL1s are 

computed for different values of τ, n and ASS0 for all the 
three charts in Table 3. For an equal footing comparison, 
the classical Shewhart S chart, DS S2 chart and the S2-EWMA 
chart are designed for the magnitude of shifts τ ∈ (0.5, 
2). As the results for MRL0 = 370 show similar trend to 
that for MRL0 = 200, only the results for MRL0 = 200 are 
presented in Table 3. 
 The S2-EWMA chart is superior to the DS S2 and S charts. 
This is always the case regardless of the value of τ. It is 
clearly seen that almost all the MRL1s in Table 3 for the 
S2-EWMA chart are less than or equal to the corresponding 
ones of the DS S2 and S charts. The difference is particularly 
remarkable for process improvement (τ < 1). For example, 
for n = 3, when one wishes to detect a 50, 40 or 30% decrease 
in the variance (i.e. τ = 0.5, 0.6 or 0.7), the MRL1s for the 
S2-EWMA chart are 12, 15 or 24, while the corresponding 
MRL1s for the S chart are 101, 144 or 196, while that for the 
DS S2 chart are 48, 79 and 116, respectively. From Table 3, 
it is obvious that there is almost no difference between the 
MRL1s for the S2-EWMA, DS S2 and S charts when both the 
sample size and an increase in the variance are large. It is 
evident that when n = 7 or 9, with at least a 70% increase 
in the variance (i.e. τ = 1.7, 1.8, 1.9 or 2.0), the MRL1s for 
the S2-EWMA, DS S2 and S charts are nearly the same. From 
the above discussion, it is clear that the S2-EWMA chart is 
superior to the DS S2 and S charts.

CONCLUSION

This paper presents an optimal design of the S2-EWMA 
chart to monitor the process variance, based on the MRL 
criterion, instead of relying solely on the ARL criterion. 
As explained in the Introduction section, the MRL gives 
more information compared to the ARL. The MRL is also 
more readily understood by practitioners when it comes 
to a highly skewed run length distribution. This paper 
complements the work of Castagliola (2005), where the 
design of the S2-EWMA chart is based on the ARL. Thus, it is 

timely to provide the optimal design of the S2-EWMA chart 
based on MRL to practitioners. A comparison of the MRL 
performance of the S2-EWMA (derived via the Markov chain 
approach), DS S2 and the S charts show that the S2-EWMA 
chart outperforms the DS S2 and S charts, for detecting 
changes in the process variance. Lastly, the CUSUM version 
of the S2 charting method using the MRL criterion is a topic 
worthy of further research. 
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APPENDIX (MARKOV CHAIN TECHNIQUE)

The MRL of the S2-EWMA chart can be evaluated using the Markov chain approximation. This discrete-time Markov 
chain approach, originally proposed by Brook and Evans (1972), is flexible and relatively easy to use. This procedure 
divides the interval between the upper control limit (UCL) and lower control limit (LCL) into p = 2m + 1 sub-intervals, 

each of width 2δ (Figure A1), where  The control charting statistic  in (3) is said to be in transient state j at 

time k if Hj – δ < Zk < Hj + δ, for j = –m, …, -1, 0, +1, …, +m, where Hj represents the midpoint of the jth subinterval. 
The control charting statistic is in the absorbing state if Zk falls outside the control limits. The process is assumed to be 
in-control whenever Zk is in a transient state and is assumed to be out-of-control whenever Zk is in the absorbing state. 

FIGURE A1. Interval between LCL and UCL divided into 
p = 2m + 1 sub-intervals of width 2δ 

 Let M be the run length of a control scheme, i.e. M represents the number of steps required until the process reaches 
the absorbing state. Here, M is a discrete phase type random variable, i.e. its distribution f(m), for m = 1, 2, …, corresponds 
to the distribution of the first passage time to the absorbing state of a Markov chain with finitely many states, where all 
states are transient, except one which is absorbing. Then the cumulative distribution function (cdf) of the run length, M 
of this control scheme is (Brook & Evans 1972)

 Pr(M ≤ m) = sT(I – Qm)1, (A1)

where matrix Q is the transition probability matrix for the transient states (after removing the absorbing state), I is the 
(p × p) identity matrix, 1 is a vector with each of its p elements equal to unity and s is the initial probability column 
vector having (2m+1) elements, with a single element corresponding to the initial state equals one and zero elsewhere. 
The transition probability matrix Q contains the one-step transition probabilities. The generic element pi, j of Q represents 
the probability that the control statistic goes from state i to state j in one step. As stated by Lucas and Saccucci (1990), 
in order to approximate this probability, it is assumed that the control statistic is equal to Hj  whenever it is in state j, i.e.

  (A2)

Introducing the cdf of the random variable Tk, (A2) can be rewritten as

  (A3)
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The cdf   of  Tk  is defined for  t ≥ A(n) + B(n)ln[C(n)] and it is equal to

  (A4)

where FG(x|u, v) is the cdf of the gamma G(u, v) distribution.

 Thus, in our case, the generic element Qi, j of matrix Q of transient probabilities is equal to

  (A5)

The generic element sj of vector s of initial probabilities is equal to 

  (A6)

for j = –m, –m + 1, …, 0, …, +m, with Z0 evaluated using (10). Consequently, this vector contains only a single element 
equal to 1, with the remaining 2m entries equal to 0.
 Then the 100γ (0 < γ <1) percentage points of the run length distribution corresponding to desired values of n and 
δ can be determined as the value mγ such that (Gan 1993a)

 Pr(M ≤ mγ – 1) ≤ γ  and  (A7a)

 Pr(M ≤ mγ) > γ. (A7b)

 If γ = 0.5, the MRL can be computed. Equations (A7a) and (A7b) enable the computation of any percentage points 
of the run length distribution.


