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A Bayesian Approach to the One Way ANOVA under Unequal Variance
(Pendekatan Bayesian kepada ANOVA Sehala di bawah Varians tak Sama)

NOPPAKUN TONGMOL, WUTTICHAI SRISODAPHOL* & ANGKANA BOONYUED 

ABSTRACT

This study involves testing the equality of several normal means under unequal variances, which is the setup of 
one-way analysis of variances (one-way ANOVA). Several tests are available in the literature, however, most of them 
perform poorly in terms of type I error rate under unequal variances. In fact, Type I errors can be highly inflated for 
some of the commonly used tests, a serious issue that seems to have been overlooked. Even though several tests have 
been proposed to overcome the problem, most of them show difficulty in calculation. Accordingly, the test for ANOVA 
with estimation of parameters using Bayesian approach is proposed as an alternative to such tests. The proposed test 
is compared with four existing tests such as the original test, James’s test, Welch’s test and the parametric bootstrap 
(PB) test. Type I error rates and powers of the tests are evaluated using Monte Carlo simulation. Our results indicated 
that the performance of the proposed test is superior to the original test and is comparable to James’s test, Welch’s 
test and the PB test, controlling Type I error rate quite well and showing high power of the test. Our study suggested 
that the proposed test has high performance and should be used as an alternative to the four existing tests due to its 
simple formula.
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ABSTRAK

Kajian ini melibatkan ujian kesamaan dalam beberapa cara yang biasa di bawah varians tak sama yang merupakan 
persediaan varians analisis sehala (ANOVA sehala). Beberapa ujian telah sedia ada dalam penulisan ilmiah, walau 
bagaimanapun, tidak menunjukkan keputusan memberangsangkan daripada segi kadar ralat Jenis I di bawah varians 
tak sama. Malah, ralat Jenis I boleh melambung tinggi bagi sesetengah ujian yang biasa digunakan, suatu isu yang 
serius yang seolah-olah telah diabaikan. Walaupun beberapa ujian telah dicadangkan untuk mengatasi masalah ini, 
sebahagian besar menunjukkan kesukaran dalam pengiraan. Sehubungan dengan itu, ujian bagi ANOVA dengan parameter 
anggaran menggunakan pendekatan Bayesian dicadangkan sebagai alternatif kepada ujian tersebut. Ujian yang 
dicadangkan dibandingkan dengan empat ujian sedia ada seperti ujian asal, ujian James, ujian Welch dan ujian butstrap 
berparameter (PB). Kadar ralat Jenis I dan kuasa ujian dinilai menggunakan simulasi Monte Carlo. Keputusan kajian 
kami menunjukkan bahawa prestasi ujian cadangan itu lebih cemerlang berbanding ujian asal dan setanding dengan 
ujian James, Welch dan PB, mengawal kadar ralat Jenis I dengan baik dan menunjukkan kuasa tinggi ujian tersebut. 
Kajian kami menyarankan bahawa ujian cadangan mempunyai prestasi yang tinggi dan harus digunakan sebagai suatu 
alternatif kepada empat ujian sedia ada kerana formula yang mudah.

Kata kunci: Kadar ralat Jenis I; kuasa ujian; pendekatan Bayesian; varians tak sama 

INTRODUCTION

One way analysis of variance (one-way ANOVA) is a 
procedure for testing the hypothesis that k population 
means are equal, where k > 2. ANOVA compares the means 
of the samples or groups in order to make inferences 
about the population means. This method is often used in 
scientific or medical experiments when such experiments 
contain several treatments. The model assumptions 
for ANOVA consist of independence, normality and 
homogeneity of variances. Sometimes homogeneity of 
variances can be violated. So, the F-test in ANOVA is not 
applicable. Box (1954) examined the effect of unequal 
variance on the test for one-way ANOVA and explained 

that the test is not serious if the groups are equal and 
moderately unequal variances since Type I error rate could 
be well controlled. In addition, Welch (1937) found that 
the effect of Type I error rate was small when the groups 
were of equal size. Assume that a random sample Xi1, …, 
Xini

  of size ni is available for the ith population N(μi, σi
2), 

i = 1, 2, 3, …,  k. Hence, the test developed for unequal 
variances under the hypotheses of interest is:

	 H0 : μ1 = … = μk  vs. H1 : μi ≠ μj for some i ≠ j.

A test statistic (Seber 1977) is given by: 
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(1)

	 In general, the population variances σi
2’s are unknown; 

in this case, a test statistic can be obtained by replacing σi
2  

in (1) with Si
2 and is given by:

 

	 	 (2)

where  and Si
2 are maximum likelihood estimators (MLE) 

of population mean and population variance, respectively. 
The test statistic in (2) (say, the original test) has chi-square 
distribution with k – 1 degrees of freedom. Therefore, the 
test rejects H0 : μ1 = … = μk at α statistical significance 
when,

	 .	 (3)

	 Many researchers have proposed the test statistic to 
test the equality of k population means under unequal 
variances.
	 James (1951) derived a second order approximation 
to the distribution of the statistic T( 1, … k ; Si

2, …, Sk
2). 

The critical value, which is a function of  Si
2’s based on the 

second-order approximation, can be expressed as follows.
Let

	

and

	  where wi = ni/Si
2,

the critical value is given as:

	

	 +      

+ 

	

(4)

This test rejects H0 when  T( 1, …, k; , …, ) > Jα,  
where T( 1, …, k; , …, ) is the observed value of 
T( 1, …, k; , …, ).
	 In 1951, Welch presented the test statistic for means 
under unequal variances,

~ Ff1
, f2 	 

(5)

where  f1 = k – 1 and  

are degree of freedom. This test rejects H0 when W*  > Ff1, f2.

	 Algina et al. (1994) compared Welch’s test and James’s 
test under unequal variance and found that Welch’s test 
and James’s test had very similar Type I error rates and 
can control Type I error rates quite well.
	 Krishnamoorthy et al. (2007) proposed the parametric 
bootstrap (PB) test by improving sample mean and sample 
variance using bootstrap method, where the parameters are 
replaced by their estimates in the test statistic T( 1, … k; 
Si

2, …, Sk
2). The PB test can be written as:

				  
		  ,
	
	 (6)

where Bi is distributed as  and Zi is a standard 
normal random variable.

Then the PB test statistic in (6) is written as:

	 .	 (7)
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The PB test rejects H0 when:

	 ,	 (8)

where T0 is the observed value of T( 1, … k ; Si
2, …, Sk

2).
	 The original test, Welch’s test, James’s test and PB 
test are based on maximum likelihood estimators. In 
addition, there are some other interesting methods for 
estimation of parameters that can be used as an alternative 
to the aforementioned methods, one of which is Bayesian 
method. This method is based on the principle that the 
knowledge about parameter θ is assumed to be contained 
in a known prior distribution π(θ). Hence, updating 
distribution of parameter θ is the posterior distribution 
π(θ⎜x1, …, xn), obtained by Bayes’s theorem. When prior 
distribution  is unknown, the Jeffrey’s prior is derived 
from the sample distribution f (x1, …, xn⎜θ), which can be 
used as an alternative to non-information prior distribution 
(Robert 2007).
	 In this study, we improve the test statistic by estimating 
population variance and population mean using Bayesian 
approach. The paper is organized as follows. The test 
statistic for ANOVA under Bayesian approach is described 
in the next section. After that, we shows comparisons of 
the performance made between and four existing test (the 
original test, James’s test, Welch’s test and the PB test) 
based on Type I error rates and power of the test. Finally, 
last section contains conclusion.

A TEST STATISTIC UNDER BAYESIAN APPROACH

Let Xij  be random variable from N(μi,σi
2), i = 1, 2, …, k; j 

= 1, 2, …, ni. The probability density function is:

	 . 	 (9)

	 Then, the likelihood function in the ith population is 
given by:
	

	 . 

(10)

From (10), we obtain the log likelihood function as

	

	 .	 (11)

	

The Fisher information matrix for   is given as,

 

  		                            . 	 (12)

Therefore, the Jeffreys prior distribution for μi and σi
2  is:

	
 

		

 
		  . 	 (13)

Hence, a joint posterior distribution for μi and σi
2  is:

 

	

	 ,	
(14)

where  and .
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Thus, the posterior distribution for σi
2 could be: 

 
	

		

					                       . 
(15)

	

	 So, we obtain Bayes estimator of population variance 
by finding the expectation of σi

2  under the posterior 
distribution of σi

2  for given data,

 

	

    
	 	 (16)
	

	 Furthermore, we also estimate population mean by 
using Bayesian method, where the posterior distribution 
for μi is:

 

	
	 (17)

	 So, Bayes estimator of population mean obtained by 
finding the expectation of μi under the posterior distribution 
of μi for given can be written as follows:

	 dμi
 

  		  	 (18)

	 After that, the parameters in (1) are replaced by the 
Bayes estimators of population mean and population 
variance and the statistic using Bayes estimator (say, the 
proposed test) can be written as:

	  

		
(19)

	 In the next section, the performance of the test statistics 
in ANOVA model using Type I error rates and power of the 
test is assessed.

TYPE I ERROR RATES AND POWER OF THE TEST

In this study, we perform a Monte Carlo simulation 
consisting of 10000 iterations to compute the Type I 
error rates and power of the test among the original test, 
James’s test, Welch’s test, the PB test and the proposed 
test. As previously mentioned, we suppose, without loss of 
generality, that μ1 = … = μk = 0,   = 1 and 0 <  < 1,  i = 
2, … k for  k = 3, 6 and 10, under various values of ni in our 
simulation studies. Therefore, the sample statistics i and 
si

2 will be generated independently as  and  
 For the procedure of PB test, the Type 

I error rates of the PB test are computed by the proportion 
of the 10000 p-values that are less than the nominal level 
α (0.05). Power of the tests is also considered in this 
study. We perform a Monte Carlo simulation that consists 
of 10000 iterations so as to compute power of the tests 
for the original test, James’s test, Welch’s test, the PB 
test and the proposed test. We assume the conditions of 
population means for k = 3 with μ1 = 0 and with μ2  and 
μ3 having different values and for k = 10 with μ1, …, μ8 
= 0 and with μ8 and μ9 having different levels where the 
population variances are 0 < σi

2 < 1, i = 2, …, k under 
selected values of ni.
	 The results of Type I error rates and power of the 
test of the original test, James’s test, Welch’s test, the PB 
test and the proposed test are presented in Tables 1 and 2, 
respectively.
	 Table 1 shows the Type I error rates for nominal level 
0.05 when k = 3, 6 and 10 and when sample sizes are equal 
and unequal for some selected values of variances. The 
results of Table 1 indicates that for k = 3 and when n = (5, 
5, 5), n = (10, 10, 10), n = (4, 6, 20), n = (3, 4, 3) and for k 
= 6 and when n = (5,5,5,5,5,5), n = (10,10,10,10,10), n = 
(3, 3. 4, 5, 6, 6), n = (4, 8, 12, 24, 30, 40) in case variances 
are equal and unequal, James’s test, Welch’s test, the PB 
test and the proposed test perform well and have similar 
Type I error rates. The original test seems to poorly control 
Type I error rates for almost all cases.
	 For k = 10 and when n = (5,5,5,5,5,5,5,5,5,5), n = 
(15,15,15,15,15,15,15,15,15,15) and variances are equal, 
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James’s test, Welch’s test, the PB test and the proposed test 
appear to control Type I error rates quite well. Meanwhile, 
the PB test tends to control Type I error rates very well as 
observed for unequal sample sizes with n = (3, 3, 3, 4, 4, 
5, 5, 5, 5) and n = (4, 4, 4, 12, 12, 15, 15, 15, 15) for equal 
and unequal variances.
	 We again note that in any cases, the proposed test can 
control Type I error rates better than the original test.
	 Table 2 shows power of the tests of the five tests. We 
observe that for k = 3, the proposed test and the original 
test appear to have high power of the test for sample sizes 
n = (10, 10, 10) and n = (10, 5, 15). When k = 10 and n = 
(15, 15, 15, 20, 20, 20, 25, 25, 25, 25) all the tests appear 
to have high power of the test with Welch’s test showing 
less power of the test than the other four tests. For n = (15, 
17, 19, 21, 23, 25, 27, 29, 31, 33), the proposed test and 
the original test seem to have high power of the test.
	 Consequently, we observe that the proposed test and 
the original test seem to have high power of the test with 
their values higher than those observed for James’s test, 
Welch’s test and the PB test. However, based on the results 
of Type I error rate, the proposed test has preference over 
the original test.

CONCLUSION

The original test for one-way ANOVA with unequal 
variances has a serious Type I error problem and some 
tests like James’s test, Welch’s test and the PB test have 
been proposed to solve the problem. However, these 
tests show difficulty in calculation. According to this, 
the test for ANOVA with estimation of parameters under 
Bayesian approach is proposed as an alternative to the 
aforementioned tests. The proposed test is compared with 
the original test, James’s test, Welch’s test, and the PB test 
in terms of Type I error rate and power of the test, and it 
is observed that for k = 3 and 6, the proposed test controls 
Type I error rate quite well, which is comparable to James’s 
test, Welch’s test and the PB test. By considering power 
of the test, high power of the test is observed for all the 
tests including the original test. Meanwhile, for k = 10, 
James’s test, Welch’s test, the PB test and the proposed test 
appear to control the Type I error rate well when sample 
sizes are equal for each group, which is well-supported 
by Box (1951). However, the PB test seems to control 
Type I error rate better than the other tests when sample 
sizes are unequal. Results on power of the test show that 
the proposed test seems to have high power of the test 
compared with the other tests. Our results suggest that the 
proposed test has high performance comparable to James’s 
test, Welch’s test and the PB test and should be used as an 
alternative approach because of its simple formula.

ACKNOWLEDGMENTS

This study is supported by the Science Achievement 
Scholarship of Thailand (SAST).

REFERENCES

Algina, J., Oshima, T.C. & Lin, W. 1994. Type I error rates for 
Welch’s test and James’ second-order test under nonnormality 
and inequality of variance when there are two groups. Journal 
of Educational and Behavioral Statistics 19: 275-291.

Box, G.E.P. 1954. Some theorems on quadratic forms in 
the study of analysis of variance problems. I. Effect of 
inequality of variance in the one-way classification. Annals 
of Mathematical Statistics 25: 290-302.

James, G.S. 1951. The comparison of several groups of 
observations when the ratios of population variances are 
unknown. Biometrika 38: 324-329.

Krishnamoorthy, K., Lu, F. & Mathew, T. 2007. A parametric 
bootstrap approach for ANOVA with unequal variances: 
Fixed and random models. Computational Statistics and 
Data Analysis 51: 5731-5742.

Robert, C.P. 2007. The Bayesian Choice from Decision-Theoretic 
Foundations to Computational Implementation. 2nd ed. New 
York: Springer Verlag.

Seber, G.A.F. 1977. Linear Regression Analysis. New York: John 
Wiley and Sons.

Welch, B.L. 1951. On the comparison of several mean values: 
An alternative approach. Biometrika 38: 330-336.

Welch, B.L. 1937. The significance of the difference between two 
means when the population variance are unequal. Biometrika 
29: 350-362.

Noppakun Tongmol & Angkana Boonyued 
Department of Mathematics, Faculty of Science 
Khon Kaen University 
Khon Kaen 40002 
Thailand

Wuttichai Srisodaphol*
Department of Statistics, Faculty of Science 
Khon Kaen University 
Khon Kaen 40002 
Thailand

*Corresponding author; email: wuttsr@kku.ac.th

Received: 	 8 May 2015
Accepted: 	15 February 2016


