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Nitric Oxide Accelerates Mycorrhizal Effects on Plant Growth 
and Root Development of Trifoliate Orange

(Nitrik Oksida Mempercepatkan Kesan Mikoriza ke atas Pertumbuhan 
Pokok dan Perkembangan Akar Oren Trifoliat)
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ABSTRACT

Arbuscular mycorrhizal fungi (AMF) actively colonize plant roots and thus enhance plant growth through different 
mechanisms. In the present study, trifoliate orange (Poncirus trifoliata) seedlings inoculated with Diversispora versiformis 
were subjected to 0 and 0.2 mmol/L sodium nitroprusside (SNP, a nitric oxide donor) treatments. After eight weeks, 
exogenous SNP considerably increased root mycorrhizal colonization by 25%, showing a positive stimulating effect of 
NO on mycorrhizal formation. Mycorrhizal inoculation significantly increased plant growth performance (height, stem 
diameter, leaf number and shoot and root dry weight) and root traits (length, projected area, surface area, volume and 
number of 2nd and 3rd order lateral roots) than non-mycorrhizal treatment and NO (exogenous SNP treatment) heavily 
strengthened the mycorrhizal effects. Moreover, NO and mycorrhization induced more fine root (0-0.5 cm) formation. 
There was an opposite changed trend in root sucrose and leaf and root glucose contents by SNP in AMF versus non-AMF 
seedlings. All these results implied that NO plays important roles in mycorrhizal formation and development and also 
accelerates mycorrhizal effects on plant growth and root development of trifoliate orange.
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ABSTRAK

Kulat mikoriza arbuskula (AMF) mengkoloni akar tumbuhan secara aktif dan seterusnya menggalakkan pertumbuhan 
pokok melalui mekanisme berbeza. Dalam kajian ini, benih oren trifoliat (Poncirus trifoliata) yang diinokulasi dengan 
Diversispora versiformis telah diberikan rawatan 0 dan 0.2 mmol/L sodium nitropussida (SNP, penderma nitrik oksida). 
Selepas lapan minggu, SNP eksogenus didapati meningkatkan pengkolonian akar mikoriza sebanyak 25% dan ini 
menunjukkan kesan rangsangan positif NO terhadap pembentukan mikoriza. Penginokulasian mikoriza meningkatkan 
prestasi pertumbuhan pokok secara signifikan (tinggi, diameter batang, jumlah daun dan berat akar kering) dan ciri 
akar (panjang, luas unjuran, luas permukaan, isi padu, bilangan akar lateral peringkat ke-2 dan ke-3) berbanding 
rawatan tanpa mikoriza serta NO (rawatan SNP eksogenus) mengukuhkan lagi kesan mikoriza. Di samping itu, rawatan 
NO dan mikoriza mengaruh lebih banyak pembentukan akar halus (0-0.5 cm). Terdapat trend perubahan bertentangan 
pada kandungan sukrosa akar, daun serta glukosa akar oleh SNP dalam benih AMF berbanding tanpa AMF. Keseluruhan 
keputusan kajian ini menunjukkan bahawa NO memainkan peranan penting dalam pembentukan dan perkembangan 
mikoriza, malah mempercepatkan kesan mikoriza ke atas pertumbuhan pokok dan perkembangan akar oren trifoliat.

Kata kunci: Cendawan mikoriza asbukula; karbohidrat; nitrik oksida; sitrus; sodium nitroprussida 

INTRODUCTION

Nitric oxide (NO) is a crucial regulator of root growth and 
development (Fernández-Marcos et al. 2011). NO as an 
essential gas signal molecule had been intensively studied 
in the past, showing a pivotal role in root organogenesis 
(Xiong et al. 2009). In general, NO not only participates 
in the inhibition of primary root (PR) growth but also 
stimulates lateral root (LR) growth (Correa-Aragunde et 
al. 2006). In addition, NO also regulates the adventitious 
root growth of cucumber cuttings (Pagnussat et al. 2002). 
Root system architecture is a vital index to describe 
the root growth and development status and it can be 
modified to facilitate the capacity of nutrition-uptake under 
environmental stresses (nutrient limitation in particular) 

(Sorgona et al. 2007). Additionally, root morphology is 
affected by internal and external factors, including soil 
microorganisms. Arbuscular mycorrhizal fungi (AMF), 
a kind of soil inhabitant fungi, can form symbiotic 
associations with approximately 90% of terrestrial plants, 
arbuscular mycorrhizas (AMs), a kind of symbiote that can 
help the host plant to absorb water and nutrients (Gadkar 
et al. 2001). Furthermore, AMs strongly promoted root 
branch and increased root morphology in the host plant 
(Wu et al. 2016). Mycorrhizal colonization promoted the 
formation of LRs of high order, induced more fine roots and 
less coarse roots (Yao et al. 2009). Besides, AMF obtains a 
certain amount of plant carbohydrates from host plants to 
the fungal partner for its development (Bago et al. 2000). 
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Therefore, the relationship among AMF, NO, carbohydrate 
and root system architecture is complex and needs to be 
further investigated.
 In this work, we assessed the effects of Diversispora 
versiformis and sodium nitroprusside (SNP, a NO donor) 
on plant growth, root morphology and carbohydrate 
concentration in leaf and root of trifoliate orange (a heavily 
mycorrhizal dependent plant) and elucidated the regulation 
of NO in the AMF effect on improving root morphology.

MATERIALS AND METHODS

The experiment consisted of a randomized block design 
with two factors: two mycorrhizal treatments (D. 
versiformis and non-AMF control) and two levels of 0 
and 0.2 mmol/L SNP. Each treatment was replicated three 
times, resulting in a total of 12 pots. Meanwhile, each pot 
had three seedlings. 
 The AM fungal strain D. versiformis was propagated 
with identified fungal spores and white clover (Trifolium 
repens) for 16 weeks in pots, thereby, containing sands, 
spores (20 spores/g) and infected root segments. Seeds 
of trifoliate orange were sterilized with 70% alcohol for 
5 min and sown into plastic pots (19 cm upper diameter 
× 17 cm height × 13 cm bottom diameter) supplied with 
4.5 kg autoclaved (0.11 MPa, 121°C, 2 h) soil and 40 g 
mycorrhizal inoculum. The non-AMF treatment received 
the same amount of autoclaved mycorrhizal inoculum. 
Subsequently, all the pots were placed in a plastic 
greenhouse of Yangtze University, where photo flux density 
ranged from 721 to 967 µmol/m2/s with 25/19°C average 
day/night temperature and 75-95% relative air humidity. 
After 90 days of plant transplanting, SNP treatments were 
done by adding 300 mL of 0 and 0.2 mmol/L SNP solution 
in the interval of three days. The SNP application was lasted 
for 8 weeks and then the seedlings were harvested. 
 Plant height, stem diameter and leaf number were 
directly measured. The seedlings were separated into 
the shoot and the root, whose dry weight was measured 
after oven-drying at 75°C for 48 h. All the root systems 
were washed carefully by tap water and the number of 
LRs in different orders as well as the length of taproots 
were recorded. Then, the root system was scanned by the 
Epson Perfection V700 Photo Dual Lens System (J221A, 
Indonesia). Root morphological traits, including length, 
surface area, volume and average diameter were analyzed 
with the scanned photo by a WinRHIZO professional 

software in 2007 (Regent Instruments Inc, Quebec, 
Canada). At the same time, 1 cm long root segments were 
collected and stained with trypan blue, according to the 
protocol of Wu (2010). The root mycorrhizal colonization 
was counted as the percentage of infected root length 
against total observed root length.
 Sucrose and glucose contents in leaves and roots were 
determined according to the method of Wu et al. (2010). 
Data (means ± SD, n = 3) were analyzed with ANOVA (SAS, 
version 8.1) and the significant differences among these 
treatments were compared by the Fisher’s Protected Least 
Significant Difference (LSD) at p<0.05.

RESULTS AND DISCUSSION

ROOT MYCORRHIZAL COLONIZATION

Root mycorrhizal colonization of trifoliate orange by D. 
versiformis varied from 42.0% to 52.7% (Table 1). Whereas, 
the SNP treatment induced 25% higher root mycorrhizal 
colonization than non-SNP treatment. Previously Calcagno 
et al. (2012) reported that, the exudates of Gigaspora 
margarita could induce NO accumulation, which is a 
novel component in the signaling pathway leading to AM 
symbiosis. Puppo et al. (2013) concluded that NO controlled 
the mycorrhizal infection process. These results suggest 
that, NO may play an important role in the colonization and 
development of root mycorrhizas.

PLANT GROWTH PERFORMANCE

AMF could stimulate plant growth significantly once the 
AM association was formed (Augin et al. 2004). The 
present study showed that inoculation with D. versiformis 
significantly increased plant height, stem diameter, leaf 
number, shoot and root dry weight by 31%, 26%, 24%, 
38% and 41% under SNP conditions and by 20%, 10%, 
15%, 17% and 11% under non-SNP conditions, respectively 
(Table 1). The AMF colonization significantly promoted 
plant growth and the SNP treatment further amplify the 
AMF effect. This could be attributed to NO, which regulates 
the growth of leaves and roots in certain concentrations 
(Cueto et al. 1996; Leshem & Wills 1998). The significant 
plant growth promotion of AMF+SNP treatment may 
be closely linked with root mycorrhizal colonization, 
because AMF+SNP treatment had significantly higher 
root colonization than AMF-SNP treatment. As previously 

TABLE 1. Effects of AMF and SNP on mycorrhizal colonization and plant growth of trifoliate orange seedlings

Treatments AMF colonization 
(%)

Plant height
(cm)

Stem diameter
(mm)

Leaf number 
per plant

Shoot biomass 
(g DW/plant)

Root biomass 
(g DW/plant)

Non-AMF-SNP
Non-AMF+SNP
AMF-SNP
AMF+SNP

0 ± 0c

0 ± 0c

42.0 ± 2.7b

52.7 ± 3.6a

17.8 ±1.4c

20.6 ±1.5c

21.3 ±1.3b

23.3 ±1.7a

2.20 ±0.13c

2.49 ±0.18a

2.42 ±.0.09b

2.78 ± 0.21a

18 ±2b

17 ±2b

21 ±1a

22 ±1a

0.407 ± 0.031c

0.494 ± 0.045b

0.478 ± 0.042b

0.561 ± 0.055a

0.235 ± 0.021b

0.262 ± 0.020b

0.262 ± 0.023b

0.332 ± 0.030a

Data (means ± SD, n = 3) followed by different letters indicate significant differences (p<0.05) between treatments
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reported by Wu et al. (2015), root mycorrhizal colonization 
was positively correlated with plant growth. These findings 
suggest that NO improved plant growth by accelerating the 
colonization of AMF. However, the underlying mechanism 
needs to be further investigated.

ROOT MORPHOLOGY

In this study, the AMF colonization significantly increased 
root projected area, surface area and volume of trifoliate 
orange seedlings: 66%, 66% and 69% higher under SNP 
conditions and 43%, 43% and 56% higher under non-
SNP conditions, respectively (Table 2). The result is in 
accordance with Wu et al. (2011). Moreover, the SNP 
treatment significantly promoted root projected area, 
surface area and volume by 19%, 19% and 18% in the 
non-AM seedlings, respectively. These results imply that 
NO (exogenous SNP treatment) strengthened the AMF effect 
on root morphology of trifoliate orange. 
 Furthermore, the AMF inoculation and SNP treatment 
strongly induced higher number of 2nd and 3rd order LRs 
(Table 2). These results are in agreement with previous 
works on leek (Berta et al. 1990) and tomato (Correa-
Aragunde et al. 2004). In addition, the AMF and SNP 
treatments represented considerably higher root length, 
which originated from the increase of fine roots in 0-0.5 
cm (Table 3). This showed that AMF mainly induce fine 
root formation, which would increase the chance by AMF 
infection (Wu et al. 2010). The AMF inoculation induced 
the host plant to produce auxin (Meixner et al. 2007), 
which is the key factor involving in root development. 

Furthermore, NO as the downstream product in the auxin 
signal transduction pathway takes part in root formation 
and development (Xiong et al. 2009). In a nut shell, these 

results suggested that AMF and NO interact synergistically 
to stimulate LR formation and fine root development. 

SUCROSE AND GLUCOSE CONTENTS IN LEAF AND ROOT

In comparison with non-AMF-SNP treatment, AMF-SNP 
treatment and non-AMF+SNP treatment significantly 
increased glucose contents by 50% and 48% in leaves 
and 16% and 44% in roots, respectively (Figure 1). 
Meanwhile, the glucose contents under AMF+SNP treatment 
were significantly less than AMF-SNP and non-AMF+SNP 
treatments both in leaves and roots. Greater root AMF 
colonization under AMF+SNP conditions may utilize more 
root glucose, thereby resulting in lower glucose contents 
under AMF+SNP treatment than AMF-SNP and non-AMF+SNP 
treatments. These results suggested that there has a 
suppressive effect between NO and AMF in promoting 
glucose content. Furthermore, compared with non-AMF-
SNP treatment, the AMF inoculation significantly increased 
leaf sucrose content by 222% under SNP treatment and by 
205% under non-SNP treatment (Figure 2). These results 
indicate that there has a synergistic effect between NO and 
AMF in accelerating the formation of sucrose in leaves. 
Additionally, compared with non-AMF-SNP treatment, root 
sucrose content significantly increased by 48% and 37% 
under AMF-SNP and non-AMF+SNP treatments, respectively, 
while decreased by 5% under AMF+SNP treatment. It 
suggests that there has an inconsistent effect between NO 
and AMF in facilitating sucrose accumulation in roots. We 
concluded an opposite trend in root sucrose and leaf and root 
glucose contents by SNP in AMF versus non-AMF seedlings. 
However, the elucidation of the biochemical mechanisms 
by which NO participated in this signaling pathway is still in 
its infancy and needs to be further investigated. In general, 

TABLE 2. Effects of AMF and SNP on root morphology and lateral root number of trifoliate orange seedlings

Treatments Average diameter
(mm)

Projected area
(cm2)

Surface area
(cm2)

Volume
(cm3)

 Number of lateral roots

1st order 2nd order 3rd order

Non-AMF-SNP 0.45 ± 0.04b 12.4 ± 1.1d 39.1 ± 3.1d 0.445 ± 0.039d 47.3 ±2.6a 115.0 ±8.0c 10.6 ±0.9c

Non-AMF+SNP 0.45 ± 0.03b 14.8 ± 0.9c 46.6 ± 3.9c 0.525 ± 0.049c 42.9 ±3.7a 134.4 ±11.2b 12.8 ±1.1c

AMF-SNP 0.50 ± 0.03a 17.7 ± 1.1c 55.8 ± 2.6b 0.694 ± 0.054b 44.4 ±3.3a 146.4 ±13.3b 17.7 ±1.6b

AMF+SNP 0.46 ± 0.03b 20.6 ± 1.8a 64.8 ± 5.2a 0.751 ± 0.066a 47.6 ±3.9a 168.2 ±10.5a 27.6 ±1.1a 

Data (means ± SD, n = 3) followed by different letters indicate significant differences (p<0.05) between treatments 

TABLE 3. Effects of AMF and SNP on root length of trifoliate orange seedlings

Treatments  Different length root (cm) Total root length
(cm)0.0＜L≤0.5 0.5＜L≤1.0 1.0＜L≤1.5 1.5＜L≤2.0 2.0＜L≤2.5 2.5＜L≤3.0

Non-AMF-SNP 223.5 ± 18.2c 38.9 ± 3.4c 6.0 ± 0.5b 3.1 ± 0.2b 2.4 ± 0.1b 2.0 ± 0.1b 276.6 ± 24.1d

Non-AMF+SNP 270.7 ± 20.1b 45.0 ± 3.5b 5.7 ± 0.4b 2.3 ± 0.1c 2.7 ± 0.1a 2.4 ± 0.2a 330.2 ± 32.4c

AMF-SNP 277.5 ± 26.3b 65.0 ± 3.5a 8.4 ± 0.4a 3.6 ± 0.3a 1.9 ± 0.1d 2.4 ± 0.2a 361.8 ± 26.4b

AMF+SNP 362.5 ± 24.5a 66.8 ± 5.3a 8.0 ± 0.7a 3.4 ± 0.2a 2.1 ± 0.1c 2.0 ± 0.1b 448.6 ± 32.0a

Note: L: Length
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AMF colonization and SNP treatment induced higher glucose 
contents and lower sucrose contents in roots of trifoliate 
orange. As previously reported by Arenas-Huertero et al. 
(2000), higher sucrose inhibits root growth because of the 
accumulation of abscisic acid, while glucose facilitates root 
growth because it plays important roles in the signaling 
pathway of gibberellins and cytokinins (Hu et al. 2009). 

CONCLUSION

The present results confirmed that NO participated in 
mycorrhizal development. Such positive effect of NO on 
mycorrhizas would accelerate AM roles in plant growth 
and root morphology (especially fine roots) of trifoliate 
orange. X.Y.H. and Q.S.W. designed the experiment; 
X.Y.H. conducted the experiment; L.T. and X.Y.H. did the 
data analysis; L.T. and N. drafted the manuscript; Q.S.W. 
and N. reviewed the manuscript. The authors state that 
there is no conflict of interest.
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