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Variance Targeting Estimator for GJR-GARCH under Model’s Misspecification
(Penganggar Sasaran Varians untuk GJR-GARCH di bawah Model Spesifikasi Ralat)
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ABSTRACT

The application of the Variance Targeting Estimator (VTE) is considered in GJR-GARCH(1,1) model, under three 
misspecification scenarios, which are, model misspecification, initial parameters misspecification and innovation 
distribution assumption misspecification. A simulation study has been performed to evaluate the performance of VTE 
compared to commonly used, which is the Quasi Maximum Likelihood Estimator (QMLE). The data has been simulated 
under GJR-GARCH(1,1) process with initial parameters ω = 0.1, α = 0.05, β = 0.85, γ = 0.1 and an innovation with a 
true normal distribution. Three misspecification innovation assumptions, which are normal distribution, Student-t 
distribution and the GED distribution have been used. Meanwhile, for the misspecified initial parameters, the first initial 
parameters have been setup as ω = 1, α = 0, β = 0 and γ = 0. Furthermore, the application of VTE as an estimator has 
also been evaluated under real data sets and three selected indices, which are the FTSE Bursa Malaysia Kuala Lumpur 
Index (FBMKLCI), the Singapore Straits Time Index (STI) and the Jakarta Composite Index (JCI). Based on the results, VTE 
has performed very well compared to QMLE under both simulation and the applications of real data sets, which can be 
considered as an alternative estimator when performing GARCH model, especially the GJR-GARCH.
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ABSTRAK

Penggunaan Penganggar Sasaran Varians (VTE) telah dipertimbangkan terhadap model GJR-GARCH (1,1) menggunakan 
tiga senario spesifikasi ralat, iaitu terhadap model, parameter awalan dan andaian taburan hingar. Kajian simulasi 
telah dilakukan untuk menilai prestasi VTE berbanding dengan Penganggar Kebolehjadian Kuasa Maksimum (QMLE). 
Data telah  disimulasikan di bawah proses GJR-GARCH (1,1) dengan parameter awalan, ω = 0.1, α = 0.05, β = 0.85, γ 
= 0.1 dan hingar yang dianggap mempunyai taburan sebenar yang normal. Tiga andaian telah digunakan terhadap 
spesifikasi ralat bagi taburan hingar iaitu taburan normal, taburan t dan taburan GED. Sementara itu, spesifikasi ralat 
bagi parameter awalan telah ditetapkan sebagai ω = 1, α = 0, β = 0 dan γ = 0. Selain itu, penggunaan VTE sebagai 
penganggar juga telah dinilai menggunakan data sebenar iaitu Indeks FTSE Bursa Malaysia Kuala Lumpur (FBMKLCI), 
Indeks Masa Selat Singapura (STI) dan Indeks Komposit Jakarta (JCI). Berdasarkan keputusan analisis, VTE menunjukkan 
hasil anggaran yang lebih baik berbanding QMLE bagi kedua-dua kajian simulasi dan kajian berasaskan data sebenar. 
Oleh itu, VTE boleh digunakan sebagai penganggar alternatif bagi model GARCH, terutamanya GJR-GARCH.

Kata kunci: GJR-GARCH; QMLE; penganggar sasaran varians (VTE); volatiliti

INTRODUCTION

The Stock Market Index is one of the key indicators that 
mirror the underlying country’s economy. It consists of the 
top performing companies that have been selected by stock 
market regulators. These companies are the representative 
of their sector, thus they become the performance indicators 
of the country’s economy. In Malaysia, the FTSE Bursa 
Malaysia Kuala Lumpur Index (FBMKLCI) has been used as 
the main market indices. It contains the top 30 companies 
based on market capitalisation and this index is constantly 
regulated by FTSE and Bursa Malaysia.
	 At the moment, the global markets have closely 
emerged if compared to the past years, as a result of 
the increase in financial integrations. This is because, 
as a part of the Association of Southeast Asian Nations 

(ASEAN), Malaysia has participated in many joint economic 
activities and treaties such as the ASEAN Economic 
Community Blueprint that could help boost the mutual 
and simultaneous growth among individual members’ 
countries as well as the collective progress of the region’s 
economy. On the other hand, the prevalence of such 
community comes with a drawback. The financial markets 
are now more exposed to the global economy and this will 
lead to a more volatile market when compared to the past 
decade. Recent events such as the Greek debt problem, the 
devaluation of the Yuan currency, and the upcoming new 
interest rate announcement by the Federal Reserve would 
without a doubt affect the regional economy. This generates 
many interests as shown in the studies by Narayan and 
Smyth (2005) and Tsukuda et al. (2017), which focused 
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on the integration of markets between different countries. 
Meanwhile, Lim and Sek (2013), Oh et al. (2010) and 
Shamiri and Isa (2009) are among the local studies that 
have analysed the volatility of the Malaysian stock market.
On the other hand, understanding the dynamics of market 
volatility is not an easy task; nonetheless, it plays an 
important role in measuring risk exposures. This is because 
a better forecast of the volatility of stock returns will lead to 
a more accurate portfolio selection that eventually reduces 
the future risks that will be faced by the investors. One 
volatility model that has received wide attention in financial 
literature is the Generalised Autoregressive Conditional 
Heteroscedasticity (GARCH) model by Bollerslev (1986), 
which is an extension of the ARCH model introduced by 
Engle (1982).
	 Furthermore, studies about the relationships between 
news and volatility are a part of the important key 
characteristics in evaluating how volatile the markets can 
react in the presence of news. A previous research by Engle 
and Ng (1993) has extended the study on the effects of news 
on volatility, based on the empirical evidences by Black 
(1976). They have proposed the use of the sign bias test in 
the process of diagnosing and examining the existence of a 
leverage effect. Moreover, the advances in information and 
communication technology have enabled news to spread 
faster than ever before. This factor has motivated Foucalt 
et al. (2016) to study the investors’ reactions towards news. 
The study has classified the investors into two groups; first, 
a group with precise news and second, a group that depends 
on news or rumours that spread faster. In all, Foucalt et 
al. (2016) concluded that the group that depends on news 
speed tends to have higher volatility than the group with 
the precise information. Meanwhile, Islam and Sultana 
(2015) studied the existence of the ‘day of the week’ effects 
in stock returns and market volatility. The study showed 
that the ‘day of the week’ effects are present due to the fact 
that important news are predominantly announced during 
the weekend and this may affect the investors’ behaviour 
to sell their holdings on the first day of market opening 
(Mehdian & Perry 2001).
	 Concurrently, the standard GARCH models have 
failed to capture this characteristic. Hence, this causes the 
researchers to propose the use of an asymmetry GARCH 
in forecasting volatility by considering the impact of 
news. An example of such models are EGARCH model by 
Nelson (1991) and the GJR-GARCH model by Glosten et al. 
(1993). This model allows positive and negative returns 
to have different impacts on conditional variance. Among 
other works that have used GJR-GARCH are Casarin et al. 
(2013), Cappiello et al. (2006) and Maheu and McCurdy 
(2004). An empirical analysis by Almeida and Hotta (2014) 
compares several asymmetry models for GARCH models 
including TGARCH, EGARCH and GJR-GARCH and compare 
its performance in estimating Brazilian Stock Market 
volatility. It was found that the GJR-GARCH was the most 
selected model by all the selection criteria compared to 
other models. On the other hand, based on empirical finding 
by Thalassinos et al. (2014), it was found that EGARCH is 

the best model is forecasting the volatility in the Czech 
Republic Stock Market. Dutta (2014) applied the EGARCH 
and GJR-GARCH model and based on the empirical results, 
it was found that the good news has impact on volatility 
more that bad news under different distribution assumption.
	 Besides that, the parameter estimation process is very 
important and careful consideration needs to be taken to 
ensure the model’s performance. However, a commonly 
used quasi-maximum likelihood estimator (QMLE) may 
not be considered as appropriate to be used in the state 
of turbulent market (Iqbal 2013). Thus, practitioners are 
often reluctant to apply QMLE directly to their model 
estimation process. This opens the possibility to consider 
an alternative estimator besides QMLE in such environment. 
Based on a recent literature, researchers have focused on 
using alternative estimators for QMLE. Researches by Boudt 
and Croux (2010) and Mukherjee (2008) mentioned that 
many studies have advised that the use of the Gaussian 
likelihood estimator is often not suitable. This is due to the 
large numbers of outliers in the estimator’s variable. Thus, 
Muler and Yohai (2008) proposed a modification towards 
the M-estimates and called it the ‘bounded M-estimation’. 
Meanwhile, Boudt and Croux (2010) proposed to use the 
M-estimator with loss functions on BEKK GARCH and later 
extended its usage on DCC GARCH. Furthermore, Boudt et 
al. (2013) and Iqbal (2013) proposed robust estimations 
of multivariate GARCH models and collected empirical 
evidences of the best predictive potential estimators, 
such as the least absolute deviation (LAD) by Peng and 
Yao (2003) and B-estimator. These researches concluded 
that the use of LAD and B-estimator have provided better 
estimations than QMLE. 
	 Consequently, among the alternative estimators, the 
most appealing estimator to study is the variance targeting 
estimator (VTE) as proposed by Engle and Mezrich 
(1996). VTE has been proven to be robust to the model 
misspecification by Francq et al. (2009); the study has 
discovered the advantages and disadvantages of VTE while 
mentioning the asymptotic properties for GARCH(1,1). It 
has been discovered that even though it is robust to initial 
misspecifications, the existence of the finite fourth order 
moments is a must in order to ensure that it sustains the 
asymptotic normality of the VTE. However, this study is 
limited to the application of GARCH(1,1). Meanwhile, 
Vaynman and Beare (2013) proposed the stable limit theory 
for VTE and also stated the asymptotic properties of VTE 
for GARCH (p,q), whereas Francq et al. (2016) extended 
the application to a multivariate GARCH. In addition, 
Francq et al. (2016) also showed a moments targeting 
for the asymmetric CCC-GARCH based on GJR-GARCH(1,1) 
model. Thus, it is the reason why we interested to extend 
the study on GJR-GARCH compares to EGARCH model as the 
moment targeting for GJR-GARCH is already established. 
Pedersen and Rahbek (2014) had also focused on the use 
of VTE in multivariate GARCH and established a theory on 
large sample properties of VTE called the BEKK-GARCH 
model. The study used variance targeting, which has been 
known to reduce the estimation processing times and as 
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a result, lowers the burden of any computerizing needs. 
Overall, all the researchers agreed on the simplicity of 
VTE. Additionally, Pedersen and Rahbek (2014) confirmed 
that VTE is more efficient as compared to QMLE when both 
known estimators are considered to be asymptotically 
normal. However, the need of the fourth order moments 
in performing VTE is crucial to ensure its performance. 
The findings is also supported by Abdul Rahim et al. 
(2017) who compared the performance of VTE and QMLE 
in GARCH(1,1) under misspecified error distribution. It is 
found out that the VTE outperforms QMLE, especially when 
the error distribution is not the same as true underlying 
error distribution.
	 On the other hand, model misspecification can 
occur when researchers cannot truly determine the true 
characteristics of the financial data. For instance, Yaya 
et al. (2014) estimated and forecasted the GARCH model 
under the misspecified probability distribution and tested 
the model using three distributions, which are normal, 
Student’s t and Generalised Error Distribution (GED). 
The study concluded that GED performed better under a 
misspecified error distribution. In the meantime, Francq 
et al. (2009) tested VTE on two case designs to test how 
misspecified initial parameters can affect the parameters for 
the performances of the estimation model and found that 
VTE has performed better. Early studies such as by Nelson 
and Foster (1995) have also examined how misspecified 
models can affect the models’ performances.
	 The main purpose of this study was to investigate how 
GJR-GARCH will be affected when there are misspecification 
in modeling process. Hence, a simulation study is set to 
show that the misspecification can be handle well by VTE 
compares to QMLE, especially in modeling the GJR-GARCH. 
This process will ensure the misspecification problem in 
modeling the real datasets is well captured by the chosen 
estimator. Meanwhile, the empirical results that will be 
used and discussed are the FBMKLCI index data, Singapore 
Straits Times Index (STI), and Jakarta Composite Index 
(JCI).

MATERIALS AND METHODS

Based on the literature reviewed, this study has chosen 
to use Francq et al.’s (2009) framework that has tested 
the VTE by using misspecified initial parameters so as 
to extend the application towards GJR-GARCH. Besides 
the misspecification of the initial parameters, it is also 
important to study the effects of the model and error 
distribution assumption misspecification.
	 This section explains both GARCH(1,1) and GJR-
GARCH(1,1) models, which are the main models used in 
this study. QMLE and VTE estimators with different types 
of error distribution that have been used for modelling 
this study are also being stated. Subsequently, the results 
of simulations are presented at the end of this section.
	 In this study, the GARCH model by Bollerslev (1986) 
has been used to examine the behaviour of volatility 
in selected financial data. The advantage of GARCH if 

compared to its predecessors is that the model showed 
the same performance as the higher order GARCH (Francq 
& Zakoïan 2010). Hence, this model has received its 
popularity as it has always become a benchmark for the 
construction of new models. Meanwhile, in this model, 
to ensure stationarity and price elimination unit in the 
financial data, the returns of stock markets are given by,

	 	 (1)

where rt is the return of stock closing price at time, t and 
pt are the current closing prices while Pt-1 is the price on 
the day before. 
	
The GARCH (1,1) model take forms as:

	  zt ~ N(0,1)	 (2)

	 	 (3)

with ω ≥ 0, α ≥ 0 and β ≥ 0.  α + β < 1 to ensure the 
stationarity of the GARCH model. On the other hand, as 
mentioned by the literature, an alternate model that includes 
the impact of news on volatility has been considered. This 
model is GJR-GARCH by Glosten et al. (1993). 
	 Glosten et al.’s (1993) version of GARCH has included 
the effects of both positive and negative news on return 
volatility. The GJR-GARCH(1,1) equation is written as 
follows:

	 	 (4)

where ω ≥ 0, α+ ≥ 0, α– ≥ 0 and β ≥ 0,  to 
ensure the stationarity of GJR-GARCH. Later, the model 
is infused with ARMA(1,0) to construct ARMA(1,0)-
GARCH(1,1) and has been applied to real data sets. 
ARMA(1,0) takes form as:

	 rt = μ + θ1rt–1	 (5)

where rt is the same as in (1).
	 The three common error distribution assumptions that 
are used in this study are normal distribution, Student’s 
t-distribution and lastly, Generalised Error Distribution 
(GED). Student’s t-distribution was first used by Bollerslev 
(1987) to capture the heavy tailed error distributions while 
the GED was used by Nelson (1991) in the ARCH model 
application.
	 Normal distribution can be defined by mean and 
variance. Hence, the random variable x is assumed to be 
normally distributed with mean μ and variance σ2, which in 
the case of the GARCH model may be time varying because 
data series are considered to be conditional distributions 
and thus, the density is given by:

	 	 (6)



2198	

	 Meanwhile, the residual ε, which is standardised by  
σ, gives the standard normal density as specified by,

	 	 (7)

	 Next, the conditional likelihood of the GARCH process 
at each point in time (LLt) and the conditional standard 
deviation σt from the GARCH motion dynamics act as a 
scaling factor on the density, therefore, 

	 	 (8)
	
(Note that normal distribution has zero skewedness and zero 
excess kurtosis) 
	 Furthermore, the difference between the Student’s t 
and normal distributions is the shape parameter of the v  
as follows:

	 	 (9)

where α, β and ν are the location, scale and shape of the 
corresponding parameters, while Γ is the Gamma function. 
This shows a unimodal and symmetric distribution where 
the location parameter α is the mean (and mode) of the 
distribution, whereas the variance is:

	 	 (10)

Hence, for standardisation, it is required that 

   thus  , 	  (11)

	 Furthermore,   is replaced by Equation (9) and 

forms in the standardised Student’s t-distribution

	

(12)

	 Thus, student distribution has zero skewedness and 
the excess kurtosis equals to 6/(v – 4) for v > 4.
	 The Generalised Error Distribution (GED) is a 
distribution in the exponential family with the conditional 
density that consists of three parameters, as given by:

	 	 (13)

where α, β and κ are the location, scale and shape 
parameters; as the distribution is symmetric and unimodal, 
hence, the location parameter is also the mode, median 

and mean of the distribution. The odd moments beyond 
the mean are zero due to the symmetry characteristic. 
Meanwhile, variance and kurtosis have been given by:

	 	 (14)

	 	 (15)

	 Therefore, as κ decreases, the density gets flatter and 
flatter, while in the limit of κ  → ∞, the distribution inclines 
towards the uniform. Thus, it becomes normal when  κ = 2 
and Laplace when κ = 1. The standardisation of GED given 
as:

	

	
	 thus 	 (16)   

	 and s (16) is substituted by (12)

yield;

	
(17)

	 The asymptotic normality and the consistency of 
QMLE of the GARCH model have been established by many 
researches such as Bollerslev and Wooldridge (1992), Lee 
and Hansen (1994), Ling and McAleer (2002) and Newey 
and Steigerwald (1997). In the meantime, Verhoeven and 
McAleer (2004) concluded the need for normality, well 
specifications of the mean and variance, a strict stationarity 
of zt and also the needs for various additional moment 
conditions on εt to ensure the consistency of QMLE.
	 Meanwhile, Francq et al. (2016, 2009) and Vaynman 
and Beare (2013) established the asymptotic properties 
of VTE. The studies discovered that VTE consists of two 
steps. First, the unconditional variance of the observed 
data, which has been estimated by a moment estimator. 
Second, the remaining parameters, which are estimated 
by QMLE. The steps are explained as follows:
	 For GARCH(1,1) as (3), ω is replaced by  
where  is the persistence defined by  = α1 + β1 is the 
unconditional variance of the model  that is related 

to its persistence, . For GJR-GARCH(1,1), the 

persistence will be replaced by  and the 
process remains the same. This shows that VTE is a two-step 
estimation, because, firstly, the unconditional variances of 
the underlying data have been estimated using its moment 
estimator and secondly, the leftover parameters have been 
estimated by QMLE. 
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	 For the purpose of simulation study, the data is 
simulated under the GJR-GARCH(1,1) process with the initial 
parameters of ω = 0.1, α = 0.05, β = 0.85 and γ = 0.1. The 
sample sizes have also been varied to differentiate between 
small and large sample sizes, hence, two sample sizes of 
n = 500 and n = 2500 have been selected, respectively. In 
addition, each datasets is generated under iteration process 
of 1000 times. The data is then simulated under normal 
distribution as the benchmark because QMLE seems to be 
desirable if the data is under normal distribution. With 
regards to this, three misspecification conditions have been 
imposed, namely parameter estimation under the model 
misspecification, error distribution misspecification and 
initial parameter misspecification. The simulation studies 
will examine the performance of the estimator, when the 
GJR-GARCH model is being exposed to the presence of 
three types of misspecification; model error distribution 
and initial parameter misspecification. For this study, 
the model with less Akaikes Information Criteria (AIC), 
Bayesian Information Criteria (BIC) and log likelihood is 
preferred. 

	 To compare the performances of QMLE and VTE under 
the misspecified model, the simulated data is modelled 
using the specifications of GARCH(1,1). The results, as 
shown in Table 1, indicate that the parameter estimation 
with GARCH(1,1) is better than GJR-GARCH(1,1) under all 
the specifications. It is also shown that the parameters 
produced by GARCH(1,1) are more likely to be significant. 
Besides that, as anticipated, the accuracy increases as 
the sample size increases. Therefore, even though the 
data is simulated under GJR-GARCH(1,1), the GARCH(1,1) 
model still gives good parameter estimations. This may 
be due to the smaller numbers of parameters that need 
to be estimated as compared to GJR-GARCH(1,1). Besides 
that, it is also important to note here that VTE seems to be 
performing well when compared to QMLE. This is because 
it has given the lowest AIC, BIC and log likelihood values 
for all the specifications. On the other hand, VTE seems to 
increase the standard errors for all parameters as shown 
in Table 1. Furthermore, with AIC and BIC as the basis for 
model selection, GARCH(1,1) with the GED innovation 
assumption has been selected as the best model for both 

TABLE 1. GARCH(1,1) and GJR-GARCH(1,1) models parameters estimation

GARCH(1,1) GJR-GARCH (1,1) GARCH(1,1) GJR-GARCH (1,1) GARCH(1,1) GJR-GARCH (1,1)

Innovation
Assumption

Normal
(n = 500)

Student-t
(n = 500)

GED
(n = 500)

Estimator QMLE VTE QMLE VTE QMLE VTE QMLE VTE QMLE VTE QMLE VTE

ω 0.0929*
(0.0711)

0.0932 0.1055*
(0.0705)

0.1055 0.0763*
(0.0610)

0.0765 0.0911*
(0.0671)

0.0911 0.0796*
(0.0648)

0.0798 0.0941*
(0.0692)

0.0941

α 0.0856
(0.0339)

0.0851*
(0.0489)

0.0504*
(0.0339)

0.0505
(0.0307)

0.0756
(0.0318)

0.0751
(0.0328)

0.0459*
(0.0328)

0.0460*
(0.0323)

0.0785
(0.0332)

0.0781
(0.0284)

0.0464*
(0.0337)

0.0464*
(0.0324)

β 0.8620
(0.0660)

0.8619
(0.1023)

0.8587
(0.0628)

0.8587
(0.0544)

0.8813
(0.0582)

0.8812
(0.0634)

0.8740
(0.0601)

0.8740
(0.0613)

0.8765
(0.0616)

0.8764
(0.0559)

0.8704
(0.0621)

0.8704
(0.0591)

AIC 3.3588 3.3548 0.0613*
(0.0474)

0.0614
(0.0471)

3.3568 3.3528 0.0560*
(0.0481)

0.0560*
(0.0480)

3.3551 3.3511 0.0590*
(0.0493)

0.0591*
(0.0483)

BIC 3.3926 3.3801 3.3590 3.3550 3.3989 3.3865 3.3576 3.3536 3.3972 3.3848 3.3557 3.3517

Likelihood -835.7085 -835.71 3.401 3.388 -834.196 -834.197 3.408 3.3958 -833.764 -833.764 3.406 3.393

Times 0.4936 0.0490 -834.75 -834.75 0.3182 0.1030 -833.40 -833.40 0.1761 0.0890 -832.92 -832.92

Innovation
Assumption

Normal
(n = 2500)

Student-t
(n = 2500)

GED
(n = 2500)

Estimator QMLE VTE QMLE VTE QMLE VTE QMLE VTE QMLE VTE QMLE VTE

ω 0.0861
(0.0212)

0.0861 0.0824
0.0203

0.0823 0.0865
(0.0215)

0.0866 0.0827
0.0207

0.0828 0.0854
(0.0199)

0.0855 0.0819
0.0192

0.0818

α 0.1039
(0.0145)

0.1038
(0.0158)

0.0771
0.0187

0.0774
0.0181

0.1041
(0.0148)

0.1034
(0.0133)

0.0772
0.0190

0.0771
0.0192

0.1044
(0.0138)

0.1041
(0.0128)

0.0777
0.0177

0.0778
0.0170

β 0.8516
(0.0207)

0.8516
(0.0255)

0.8593
0.0205

0.8593
0.0188

0.8516
(0.0210)

0.8517
(0.0209)

0.8594
0.0208

0.8594
0.0207

0.8515
(0.0195)

0.8515
(0.0199)

0.8592
0.0194

0.8592
0.0277

AIC 3.4074 3.4066 0.0410*
0.0220

0.0411*
0.0223

3.4094 3.4086 0.0412*
0.0224

0.0411*
0.0226

3.4062 3.4054 0.0408
0.0208

0.0409*
0.0229

BIC 3.4167 3.4136 3.4069 3.4061 3.4210 3.4179 3.4089 3.4081 3.4178 3.4147 3.4055 3.4047

Likelihood -4255.2 -4255.2 3.4185 3.4154 -4256.6 -4256.7 3.4228 3.4197 -4252.7 -4252.7 3.4195 3.4163

Times 0.1941 0.2362 -4253.56 -4253.58 0.6054 0.4813 -4255.08 -4255.08 0.6114 0.30721 -4250.87 -4250.87

(*) indicate the parameters have p-value>0.05. The brackets show the standard errors of each parameter
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small and big data samples. In contrast, by using the 
log likelihood indicator, GARCH(1,1) with Student’s t 
innovation assumption is more preferable for both small 
and sample data sizes. Thus, normal innovation assumption 
is not desirable under all of the specifications. Besides that, 
this study also noticed that the processing times for VTE 
are less than QMLE under all of the specifications. 
	 Using the framework adapted from Francq et al. 
(2009), the specification to represent the initial misspecified 
parameters has been extended to the applications of GJR-
GARCH(1,1). Hence, the initial parameters have been setup 
as ω = 1, α = 0, β = 0 and γ = 0. The results in Table 2 
shows that the models’ performance has reduced from 
what is indicated in Table 1. This shows that there are 
many insignificant parameters in this model and this may 
be due to the simulated data that has been generated under 
the normal distribution. Under the misspecified initial 
parameters, VTE did not only outperform QMLE for AIC, BIC 
and log likelihood, but it showed that the standard errors 
for each parameter are also less than QMLE. Hence, the 
results are similar to the ones in Table 1, where AIC and BIC 
favoured the model under the GED innovation assumption, 
while log likelihood preferred the Student’s t for both small 
and big sample sizes. As the simulated data has been set 
to be normally distributed, the estimators’ performances 
under the innovation misspecification can be examined. 
Here, the models have not been improved even under the 
well specified innovation assumption.
	 In terms of the application of real data sets, the 
daily closing stock market indices from three major 
ASEAN countries have been collected. For this study, the 
FTSE Bursa Malaysia Kuala Lumpur Composite Index 
(FBMKLCI), the Singapore Straits Times Index (STI) and 
the Indonesia Jakarta Composite Index (JCI) have been 
selected. The data has been obtained from the Thomson 
Reuters Datastream and consists of historical data from a 
five-year period starting from 16th August 2010 until 14th 
August 2015.

	 Table 2 shows the descriptive statistics for all three 
times series. Of all the stock markets, JCI experienced 
higher average returns (0.0336%) when compared to STI 
and FBMKLCI, but it also produced the highest standard 
deviation. Furthermore, all of the series were found to be 
leptokurtic and skewed to the left. Based on the Jarque-
Bera test, all series rejected the null hypotheses of normal 
distribution. In addition, the null hypotheses for the unit 
root tests are rejected as shown by the ADF and PP test. 
As for the KPSS test, the null hypothesis of stationarity 
is accepted, while the ARCH Lagrange Multiplier test for 
conditional heteroscedasticity has given a significant arch 
effect in the time series. Hence, it is suitable to implement 
the GARCH model into these three time series.
	 Therefore, to infuse the GARCH model with the ARMA 
model, a simple diagnostic using AIC has been used to select 
the best ARMA order. Here, ARMA(1,0) has given the lowest 
AIC, thus, it has been selected to accommodate the GARCH 
model. As the study focuses on GJR-GARCH, the full model 
is ARMA(1,0)-GJR-GARCH(1,1).

RESULTS AND DISCUSSION

To investigate how QMLE and VTE performed under real 
data sets, the indicators on which models to select still 
used the same measurements from the simulation study. 
Hence, the lowest AIC, BIC and log likelihood have been 
preferred. Meanwhile, in the real environments, the true 
characteristic of the series has been commonly unknown; 
this is why practitioners always considered the alternative 
model and estimators, to ensure which are the best models 
to project future volatility. Thus, three data sets, namely 
FBMKLCI, STI and JCI, are modelled under ARMA(1-0)-GJR-
GARCH(1,1). Furthermore, two innovation assumptions, the 
Student’s t and GED distributions, have been used as the 
previous descriptive statistics have stated that the series 
are not normally distributed (Table 3). 

TABLE 2. Descriptive statistics for all times series

FBMKLCI STI JCI

Panel A: Basic descriptive statistics
Mean
Median
Std. dev.
Skewness
Kurtosis
JarqueBera

0.0103
0.0149
0.5602
-0.3454
5.9590
481.67**

0.0045
0.0046
0.7567
-0.5195
6.1775
607.27**

0.0336
0.0996
1.1312
-0.8694
9.7392
2363.5**

Panel B: unit root and stationarity test
ADF
PP
KPSS

-10.462**
-1071.4**
0.3814

-11.003**
-1255**
0.0503

-9.868**
-965.78**
0.14721

Panel C: heterocedasticity test
ARCH LM Test 119.82** 181.1** 169.32**

(**) Denotes the rejection of the null hypothesis of normality, unit root, stationarity and ARCH effect at the 1% significance level
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	 As shown in Table 4, only the model under the GED 
innovation assumptions has given all parameters that are 
significant. Thus, based on the log likelihood value, the 
models with GED under the VTE estimators have been the 
best, except for the Student’s t under the same estimator, 
which has shown to be the best model, if the selection is 
based on AIC and BIC. Therefore, the model is well fitted 
since the ARCH Lagrange Multiplier at lag 5 (LM (5)) 
has shown insignificant ARCH effect after the data was 
modelled using ARMA(1,0)-GJR-GARCH(1,1). Furthermore, 
the sign bias (SB), the negative sign bias (NSB) and the 
positive sign bias (PSB) tests have also been given the 
insignificant value and this shows that the models have 
captured the effects’ signs effectively as the sign bias test is 
the test on the magnitude of the square on the current shock  
εt. Hence, the conditional variance ht depends on the sign 
of the lagged shock εt–1. Furthermore, STI, as shown in the 
results in Table 5, is the best model and is also in parallel 
with the FBMKLCI results, where the model with Student’s 

t innovation under the VTE estimator is preferred using the 
log likelihood value, while the GED with VTE estimator 
is preferable when AIC and BIC are being used. This is 
because the use of VTE on STI series seems to reduce the 
parameters for standard error. Meanwhile, the JCI results 
in Table 6 seem to produce slightly different results from 
STI and FBMKLCI; however, it is still the best model under 
the VTE estimation. Moreover, the parameter standard error 
has also been reduced when the model is estimated using 
VTE.

CONCLUSION

In conclusion, there are three misspecification conditions 
of the GARCH model that have been considered to 
evaluate both QMLE and VTE. From the results of the 
simulation, VTE seems to perform better as compared 
to QMLE, based on AIC, BIC and log likelihood values. 
VTE has reduced the number of parameters that need 
to be estimated. On the other hand, GED and Student’s 
t innovation assumptions have performed better when 
compared to normal distribution. This is because normally, 
distributed data can cause the parameters in GJR-GARCH 
to be insignificant. However, as commonly understood, 
financial data is, literally, not normally distributed; hence, 
a well specified error distribution assumption, which in this 
study is normally distributed, has not increased the model’s 
performance. Furthermore, as shown by the application 

TABLE 4. Estimation results of ARMA(1,0)-GJR-GARCH(1,1)  
for expectation of FBMKLCI returns

Innovation 
Assumption

Student-t GED

Estimator QMLE VTE QMLE VTE

Mean 0.0284
(0.0136)

0.0278
(0.0138)

0.0225
(0.0108)

0.0213
(0.0077)

MA (1) 0.0746
(0.0282)

0.0745
(0.0282)

0.0547
(0.0214)

0.0533
(0.0172)

Omega 0.0089
(0.0038)

0.0091 0.0118
(0.0048)

0.0119

Alpha (1) 0.0205*
(0.0169)

0.0225*
(0.0201)

0.0227
(0.0190)

0.0267
(0.0228)

Beta (1) 0.9053
(0.0261)

0.9042
(0.0379)

0.8887
(0.0316)

0.8860
(0.0445)

Gamma (1) 0.0832
(0.0277)

0.0856
(0.0314)

0.0899
(0.0315)

0.0945
(0.0361)

LM (5)
SB
NSB
PSB
Times
Log-likelihood
AIC
BIC

2.378
1.9621
1.2213
0.4259
1.1118

-873.3173
1.4408
1.4700

2.426
1.9567
1.1803
0.3834
0.4002

-873.373
1.4392
1.4643

2.744
1.9151
1.1811
0.4698
1.0667

-874.7537
1.4431
1.4724

2.874
1.8591
1.0875
0.3379
0.6274

-874.9312
1.4418
1.4669

(*) indicate the parameters have p-value>0.05. The bracket show the standard error of each parameter

TABLE 3. AIC of ARMA order for all series

FBMKLCI STI JCI

ARMA(0,0)
ARMA(1,0)
ARMA(0,1)
ARMA(1,1)

2105.16
2089.87
2091.78
2090.7

2976.6
2975.45
2975.55
2977.27

3615
3613.65
3613.67
3615.65
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TABLE 5. The Estimation results of ARMA(1,0)-GJR-GARCH(1,1)  
for expectation of STI returns

Innovation 
Assumption

Student-t GED

Estimator QMLE VTE QMLE VTE

Mean 0.0210*
(0.0166)

0.0150*
(0.0160)

0.0178
(0.0156)

0.0130*
(0.0111)*

MA (1) 0.0024*
(0.0278)

0.0024*
(0.0270)

-0.0008
(0.0268)

-0.0012
(0.0194)

Omega 0.0046
(0.0016)

0.0045 0.0050
(0.0019)

0.0048

Alpha (1) 0.0002*
(0.0111)

0.0072*
(0.0043)

0.0050
(0.0132)

0.0116*
(0.0104)

Beta (1) 0.9511
(0.0088)

0.9461
(0.0001)

0.9459
(0.0121)

0.9414
(0.0000)

Gamma (1) 0.0729
(0.0156)

0.0772
(0.0063)

0.0730
(0.0173)

0.0766
(0.0185)

LM (5)
SB
NSB
PSB
Times
Log-likelihood
AIC
BIC

0.2075
1.9069
0.5626
0.8177
0.8155

-1275.378
2.0132
2.0414

0.0782
2.0144**
0.8438
0.9335
0.4513

-1276.114
2.0127
2.0370

0.0782
1.7819
0.5954
0.9530
0.9256

-1272.045
2.0079
2.0362

0.0848
1.8324
0.8337
1.0933
0.6444

-1272.608
2.0072
2.0315

(*) indicate the parameters have p-value>0.05. The bracket show the standard error of each parameter

TABLE 6. The Estimation results of ARMA(1,0)-GJR-GARCH(1,1)  
for expectation of JCI returns

Innovation 
Assumption

Student-t GED

Estimator QMLE VTE QMLE VTE

Mean 0.0831
(0.0242)

0.0804
(0.0244)

0.0969
(0.0269)

0.0928
(0.0199)

MA (1) -0.0214*
(0.0316)

-0.0213*
(0.0337)

-0.0268*
(0.0336)

-0.0250
(0.0121)

Omega 0.0317
(0.0105)

0.0313 0.0322
(0.0110)

0.0303

Alpha (1) 0.0225*
(0.0196)

0.0336*
(0.0191)

0.0234*
(0.0206)

0.0435
(0.0138)

Beta (1) 0.8976
(0.0218)

0.8937
(0.0108)

0.8965
(0.0228)

0.8894
(0.0035)

Gamma (1) 0.0921
(0.0293)

0.0961
(0.0326)

0.0882
(0.0298)

0.0866
(0.0225)

LM (5)
SB
NSB
PSB
Times
Log-likelihood
AIC
BIC

1.9794
1.6702
0.1338
0.5967
0.6454

-1564.181
2.7540
2.7850

2.0901
1.5019
0.2136
0.7874
0.3522

-1564.801
2.7534
2.7799

1.9312
1.5094
0.0207
0.6561
0.8516

-1570.625
2.7653
2.7963

2.1247
1.5287
0.2268
0.8165
0.5853

-1571.708
2.7655
2.7920

(*) indicate the parameters have p-value>0.05. The bracket shows the standard error of each parameter
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of these models to real data sets by modelling the three 
major indices, FBMKLCI, STI and JCI, it can be concluded 
that VTE has performed very well. Therefore, based on the 
findings of this study, it can be concluded that it is best to 
use alternative estimators rather than QMLE in modelling 
GARCH and specifically, GJR-GARCH, under assumption of 
misspecified model.
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