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ABSTRACT

Traumatic brain injury (TBI) is a major health problem because of its high mortality and long-term disability worldwide. 
Neural progenitor/stem cells (NPSCs) that survive in certain parts of the brain, enable brain to produce new neurons 
and glia. ACTH4-10Pro8-Gly9-Pro10 has a modulation effect on the expression and activation of the BDNF/TrkB system in 
the hippocampus area. The BDNF/TrkB pathway system is a potential therapeutic target toward NPSCs proliferation 
after TBI. Thirty male Sprague-Dawley rats were divided into three groups, i.e A=sham-operated controls; B=TBI; 
C=TBI+intranasal ACTH4-10Pro8-Gly9-Pro10 administration. After 24 h, rats’ brains were immunohistochemically 
processed, to observe the number of cells expressing mBDNF, TrkB, and SOX2 in the subgranular zone(SGZ) of the 
hippocampus dentate gyrus(DG). Data were analyzed with SPSS 17, ANOVA, Post Hoc Tukey HSD test, with p value < 
0,05. Mean expression of BDNF group C=16.33 ± 2.83 increased significantly compared to group A=8.33 ± 
1.32(p=0.0001) and group B=5.89 ±1.69(p=0.0001). Mean expression of TrkB group C=17.00 ± 1.58 increased 
significantly compared to group A=4.33 ± 1.73(p=0.0001) and group B=5.89 ± 2.47(p=0.0001), TrkB expression in 
group B increased insignificantly compared to group A (p= 0.234).  Mean expression of SOX2 in group C=12.56 ± 2.07 
increased significantly compared to group B = 8.89 ±2.318(p=0.0001) and group A=4.89 ± 2.42(p=0.0001). ACTH4-

10Pro8-Gly9-Pro10 can increase the expression of BDNF and TrkB, and the proliferation of NPSCs in the subgranular zone 
(SGZ) of the hippocampus dentate gyrus (DG).
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ABSTRAK

Kecederaan trauma otak (TBI) adalah masalah kesihatan utama di seluruh dunia kerana kadar motaliti yang tinggi dan 
kecacatan jangka panjang. Neural progenitor/sel stem (NPSCs) yang bertahan pada bahagian tertentu otak, 
membolehkan otak menghasilkan sel neuron dan glia baru. ACTH4-10Pro8-Gly9-Pro10 mempunyai kesan modulasi pada 
ekspresi dan pengaktifan sistem BDNF/TrkB di kawasan hipokampus. Sistem BDNF/TrkB merupakan sasaran terapeutik 
yang berpotensi ke arah proliferasi NPSC selepas TBI. Tiga puluh tikus Sprague-Dawley jantan dibahagikan kepada 
tiga kumpulan, iaitu A=kawalan negatif; B=TBI; C=TBI+ACTH4-10Pro8-Gly9-Pro10 intranasal. Selepas 24 jam, otak tikus 
diproses secara imunohistokimia untuk melihat bilangan sel yang mengekspresikan mBDNF, TrkB, dan SOX2 pada 
subgranular zone(SGZ) daripada hipokampus dentat girus (DG). Data dianalisis dengan ujian SPSS 17, ANOVA, Post 
Hoc Tukey HSD, dengan nilai p <0.05. Ekspresi BDNF kumpulan C=16.33±2.83 meningkat secara signifikan berbanding 
kumpulan A=8.33±1.32(p=0.0001), dan kumpulan B=5.89 ±1.69(p=0.0001). Secara keseluruhan ekspresi TrkB 
kumpulan C =17.00 ±1.58 meningkat secara signifikan berbanding kumpulan A=4.33±1.73(p=0.0001) dan kumpulan 
B=5.89±2.47(p=0.0001), ekspresi TrkB pada kumpulan B meningkat tidak signifikan dibandingkan dengan kumpulan 
A (p= 0.234). Rata-rata ekspresi SOX2 kumpulan C=12.56±2.07 meningkat secara signifikan dibandingkan dengan 
kumpulan B=8.89±2.318(p=0.0001) dan kumpulan A=4.89±2.42(p=0.0001). ACTH4-10Pro8-Gly9-Pro10 dapat 
meningkatkan ekspresi BDNF dan TrkB serta meningkatkan proliferasi NPSCs pada zon subgranulr (SGZ) daripada 
hipokampus dentat girus (DG). 

Kata kunci: ACTH; BDNF; kecederaan trauma otak; sel stem neural; SEMAX; SOX2; TrkB

INTRODUCTION

Traumatic brain injury (TBI) is a major public health 
problem because of its high mortality and long-term 
disability worldwide (Carney et al. 2016), which is 
estimated to be a major cause of death and disability by 
2020 (Faried et al. 2017). In the United States there are 

3.2–6.5 million people currently live with physical, 
cognitive, or psychological impairment and 50,000 
individuals die due to TBI each year (Centers for Disease 
Control and Prevention 2015; Seo et al. 2018). Head injury 
following road traffic collision is more common in low- and 
middle-income countries, and the proportion of TBIs 
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secondary to road traffic collision is likewise greatest in 
these countries. Meanwhile, the estimated incidence of TBI 
is highest in regions with higher-quality data, specifically 
in North America and Europe (Dewan et al. 2018). In 
Indonesia, severe TBIs range between 6% and 12% of all 
TBI, with mortality ranging between 25% and 37% (Faried 
et al. 2017). TBI data cases in the neurosurgery department 
H. Adam Malik hospital showed that total TBI cases in 
2010 as many as 1627 cases, and 274 cases were TBI 
requiring surgery. 

TBI consists of two phases, primary and secondary 
injury (Galgano et al. 2017; Prins et al. 2013; Sun 2014). 
Currently, TBI therapy management is focused on 
preventing or reducing the duration of secondary injuries, 
rather than just repairing damage caused by the primary 
injury. Clinical evidence indicates that the hippocampus is 
highly susceptible to secondary injury (Rolfe & Sun 2015). 
Hippocampal injury is associated with memory deficits 
and learning abilities (Girgis et al. 2016; Wolf et al. 2017). 
Cognitive deficits are common following TBI and 
contribute significantly to disability. The frontal lobes and 
their related circuitry are particularly vulnerable to 
traumatic damage; hence executive dysfunction is 
prevalent (Rabinowitz & Levin 2014). If there is a damage 
to the part of the brain, such as the frontal lobe, prefrontal 
behavioral symptoms might occur (Loe & Maliawan 2019). 
This cognitive sequelae is the most severe and long-lasting 
TBI deficit, it causes inhibition of patient’s recovery to 
normal social function. Improvement of spontaneous 
cognitive functions may occur but is very limited and rare 
in two years post-injury (Sun 2014).

Various studies showed that neural progenitor/stem 
cells (NPSCs) that persist in certain parts of the brain, 
give the brain the ability to produce new neurons and glia 
(Gage & Temple 2013). Research evidence suggests that 
neurogenesis processes occur in the subventricular zone 
(SVZ) of the lateral and subgranular zone (SGZ) of the 
hippocampus dentate gyrus (DG) in adult mice, rats, 
primates and human brains (Gage & Temple 2013; Rolfe 
& Sun 2015; Sun 2014). Newly formed cells can 
differentiate into mature functional nerve cells and 
integrate in neural networks (Lindvall & Kokaia 2015), 
including cells involved in cognitive function (Zhang et 
al. 2008a). Ischemic brain injury stimulates the 
proliferation of neural progenitor/stem cells (NPSCs) 
located in SVZ and SGZ in adult rats’ brains. Newly 
formed cells will migrate to areas of the injured brain, 
which will differentiate into mature nerve cells (Jin et al. 
2003). Traumatic brain injury also induces cell 
proliferation of the hippocampus and ipsilateral SVZ, 
which persist for at least one year (Zheng et al. 2013) and 
also induces cell proliferation in the brain cortex which 
located in white matter of the brain in some contralateral 
passages (Urrea et al. 2006). Although it is unclear as to 
what kind of injury that can induce post-TBI neurogenesis, 
evidence of neurogenesis in the brain injury area, raises 
hopes for rebuilding damaged tissue by endogenous 
neural stem cell (NSCs) cells (Urrea et al. 2006; Zheng 
et al. 2013). NPSCs are available in limited quantities in 

subventricular zone (SVZ) and hippocampus dentate gyrus 
(DG); in vivo, NPSC at that location, characterized by 
expression of SOX2 [SRY (sex determining region Y)-box 
2] (Faigle & Song 2013).

The N-terminal fragment of adrenocorticotropic 
hormone (ACTH), ACTH4-10, is known to play a role in 
stimulating attention, learning and memory formation 
(Koroleva & Myasoedov 2018). One of the clinically 
proven neuroprotective agent is ACTH4-10Pro8-Gly9-Pro10 
peptide compound (Medvedeva et al. 2013). The ACTH4-

10Pro8-Gly9-Pro10 compound is a heptapeptide with a 
Met(hionine)-Glu(tamine)-His(tidine)-Phe(nylalanine)-
Pro(line)-Gly(cine)-Pro(line) with single letter 
nomenclature MEHFPGP. The heptapeptide compound 
ACTH4-10Pro8-Gly9-Pro10 is an ACTH4-10 analogue which is 
free from hormonal effects and has a neuro-modulatory 
effect (Koroleva & Myasoedov 2018).

This suggests that the neurotropic role of ACTH4-

10Pro8-Gly9-Pro10 is mediated by stimulation of neurotrophin 
synthesis (Medvedeva et al. 2013), that enhances the 
expression of nerve growth factor and brain-derived 
neurotrophic factor (BDNF) in rat glial basal forebrain cell 
cultures and in mouse in-vivo receiving ACTH4-10Pro8-Gly9-
Pro10 intranasal (Agapova et al. 2007), and expression of 
tropomyosin receptor kinase B (TrkB) in mouse 
hippocampus (Dolotov et al. 2006). It is concluded that 
ACTH4-10Pro8-Gly9-Pro10 has a modulation effect on the 
expression and activation of BDNF/TrkB system in the 
hippocampus area (Dolotov et al. 2006).

mBDNF plays a role in cell proliferation, differentiation, 
adhesion and maturation, which induces growth, resistance 
and regeneration of central nervous cells after injury 
(Numakawa et al. 2010). TrkB is an intracellular receptor 
tyrosine kinase that has the greatest affinity for mBDNF, 
which plays a role in various intracellular cascades; TrkB 
regulates cell growth, differentiation of nerve, and 
regulating neuronal plasticity (Gupta et al. 2013). TBI is 
known to cause temporarily and selectively downregulation 
of TrkB receptors (Conte et al. 2009; Hicks et al. 1998; 
O’Dell et al. 2000).

The BDNF/TrkB pathway system is a potential 
therapeutic target toward NPSCs proliferation after TBI. 
Until now, the effect of ACTH4-10Pro8-Gly9-Pro10 (MEHFPGP) 
intranasal on the expression of BDNF, TrkB and NPSCs 
after traumatic brain injury is unknown. Therefore, this 
study will examine the effect of intranasal administration 
of ACTH4-10Pro8-Gly9-Pro10 (MEHFPGP) as a promoter of 
proliferation of neural progenitor/stem cells (NPSCs) in rat 
that have traumatic brain injury.

MATERIALS AND METHODS

The study was conducted in accordance with ethics 
approval from the Ethics Committee, Faculty of Medicine, 
Universitas Sumatera Utara, Indonesia (No:68/TGL/KEPK 
FK USU-RSUP HAM/2016). Research and treatment were 
carried out in the laboratory of pharmacology and 
biochemistry, Faculty of Medicine, University of 
Brawijaya, Malang, Indonesia.
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RAT MODEL OF CLOSED HEAD INJURY

Unilateral focal brain injury was induced on the right cortex 
using rat model of closed head injury with scalp incision 
(CHI), performed with the modified Shohami’s weight-drop 
model. Thirty Sprague Dawley rats weighing 250-400 g 
were randomized into three treatments group, i.e. sham-
operated controls, CHI, and CHI with ACTH4-10Pro8Gly9Pro10 
(50 μg/kgBB). All rats were given ketamine HCl 
(Intramuscular dosage 100 mg/kg) and xylazine base 
concentration 20 mg/mL (Intramuscular dosage 0.15 mL/
kg). The scalp was cleaned with povidone iodine; and 
aseptic techniques were used throughout surgery. The scalp 
was opened on the right frontal. Then, the rats were placed 
securely in stereotactic apparatus. We gave 40 g metal mass 
from 1.5 m height (Figure 1). 

Observation was carried out until 24 h after 
treatment. Afterward, rats were sacrificed through 
cervical dislocation after giving ketamine HCl (100 mg/
kg, intramuscular). The brains were dissected (Figure 2) 
and post-fixed in 10% buffered formalin. The specimens 
were then processed for paraffin-embedded for 
immunohistochemistry staining preparation. Sham-
operated controls rat underwent anaesthesia and surgery, 
without trauma and treatment.

ACTH4-10PRO8GLY9PRO10 TREATMENT PROTOCOL

Rats were given ACTH4-10Pro8Gly9Pro10 intranasal 
application (50 μg/kgBB) once daily. This treatment 

protocol was based on those used for other studies in which 
neuronal effect was observed (Agapova et al. 2007).

IMMUNOHISTOCHEMISTRY STAINING

As neural progenitor/stem cells (NPSCs) proliferation 
marker, we investigated the expression of mBDNF, TrkB, 
and SOX2. The expression of all markers were investigated 
on paraffin-embedded sections using the avidin-biotin-
peroxidase complex method. Five-micrometer-thick 
paraffin sections were dewaxed, rehydrated, and 
microwaved for 10 min. The endogenous peroxidase 
activity of the investigated specimens was blocked with 
3% H2O2 for 10 min, followed by 25 min washing with 
phosphate-buffered saline (PBS). The tissue sections were 
incubated with normal rabbit serum for 10 min, and then 
the slides were incubated at room temperature with 
monoclonal mouse antibody mBDNF, TrkB, and SOX-2 
(Santa Cruz). Sections were washed with PBS and 
incubated with a secondary antibody for 30 min. Sections 
were washed twice with PBS, developed with 0.05% 
3,3Diamino-benzinetetrahydrochloride for 5 min, and 
slightly counterstained. 

All samples were evaluated by first author (not blinded 
to specimen). Positive signal for mBDNF, TrkB, and SOX-
2 in brain tissue was quantitatively estimated on the basis 
of distribution of positive stained cells in the sub-granular 
zone (SGZ) of the hippocampus dentate gyrus (DG) in right 
brain hemisphere. The number of positive cells are counted 

FIGURE 1. Animal model. A. Modified Shohami's weight-drop model; B. Closed head injury (CHI) with scalp incision; C. Rat after 
injury

 B  A  C 

FIGURE 2. Rats’ brains. A. sham-operated control group. B. CHI group. C. CHI+ ACTH4-10Pro8-Gly9-Pro10 group
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controls was 4,89±2,42 and in CHI was 8,89±2,31. It was 
significantly upregulated in CHI group (p=0.003) (Figure 
6). We found that mBDNF and SOX-2 were significantly 
upregulated in CHI group compared to sham-operated 
group (p<0.05).

ACTH4-10PRO8GLY9PRO10 MODULATED THE EXPRESSION 
OF MBDNF, TRKB, AND SOX-2 AFTER TBI

After 24 h intranasal application of ACTH4-10Pro8Gly9Pro10, 
it showed that ACTH4-10Pro8Gly9Pro10 upregulated the 
expression of mBDNF, TrkB, and SOX-2 (Figure 3). The 
mean of immunopositive cells to mBDNF was 16.33 ± 2,83 
(Figure 4); TrkB was 17,00 ± 1,58 (Figure 5). It was 
significantly compared to sham-operated group (p=0,0001) 
and CHI group (p=0,0001). Mean of immunopositive cells 
to SOX-2 was 12,56 ± 2,07. It was significantly compared 
to sham-operated group (p=0,0001) and CHI group 
(p=0,006) (Figure 6).

TABLE 1. Expression of mBDNF, TrkB and SOX-2 in sham-
operated control group, CHI, and CHI+ ACTH4-10Pro8-Gly9-Pro10 

group

Group mBDNF TrkB SOX-2
Sham-operated 
control

2.44 ± 1.01 3.33 ± 1.22 7.33 ± 1.23

CHI 8.56 ± 1.24 9.89 ± 2.26 9.78 ± 1.56
CHI+ ACTH4-

10Pro8-Gly9-
Pro10 

11.67 ± 1.94 12.67 ± 1.80 12.00 ± 
1.22

P 0.0001 0.0001 0.0001

One way ANOVA; *significant. CHI Closed head injury

using light binocular microscope with 1000 times 
magnification in twenty high power fields.

Statistical Analysis
The total stained cells were reported in mean and standard 
deviation. When comparisons were made between groups, 
significance in between-group variability was analyzed 
using the one-way ANOVA test with Tuckey as post hoc 
test. Differences were considered significant at the P <0.05.

RESULTS 

Thirty rats were included in this research, divided into 
three groups, i.e. sham-operated controls, CHI, and 
CHI+ACTH4-10Pro8Gly9Pro10. ACTH4-10Pro8Gly9Pro10 was 
given once daily. During the follow up, two rats died 
directly after trauma procedure. The brain was removed 
after craniocervical dislocation (Figure 2).

EXPRESSION OF MBDNF, TRKB, AND SOX-2 AFTER TBI

Immunohistochemistry were used to detect the expression 
of mBDNF, TrkB, and SOX-2 in brain tissue 24 h after CHI. 
As expected mBDNF, TrkB, and SOX-2 were localized to 
the nucleus. All of the immunopositive cells were present 
in the dentate gyrus (Right brain hemisphere) (Figure 3).

The mean of immunopositive cells to mBDNF (Figure 
4) in sham-operated controls was 8.33±1.32 and in CHI 
was 5.89±1,69; it was significantly downregulated in CHI 
group (p=0.047). In addition, the mean of immunopositive 
cells to TrkB (Figure 5) in sham-operated controls was 
4.33±1,73 and in CHI was 5.89±2,47. It was not 
significantly upregulated in CHI group (p=0.234). The 
mean of immunopositive cells to SOX-2 in sham-operated 

FIGURE 3. Expression of mBDNF, TrkB, and SOX-2 in brain tissue 24 h after CHI; A. sham-operated control group;                             
B. CHI group; C. CHI+ ACTH4-10Pro8-Gly9-Pro10 group

BDNF

TrkB

SOX - 2
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DISCUSSION

We investigated the effects of ACTH4-10Pro8Gly9Pro10, a 
promising agent to treat traumatic brain injury in the ‘acute 
phase’, on endogenous neural progenitor/stem cells 
(NPSCs) in vivo using immunohistochemistry. Our data 
suggested a positive effect of ACTH4-10Pro8Gly9Pro10 on 
NPSCs proliferation in sub-granular zone (SGZ) in the 
dentate gyrus (DG) of hippocampus. It was possible 
because ACTH4-10Pro8-Gly9-Pro10 has a modulation effect 
on the expression and activation of BDNF/TrkB system in 
the hippocampus area, by increasing expression of neuronal 
growth factors and brain-derived neurotropic factors 
(BDNF) and show tropomyosin kinase B receptors (TrkB) 
in rat hippocampus (Dolotov et al. 2006).

INTRANASAL ACTH4-10PRO8-GLY9-PRO10 (MEHFPGP) 
INCREASES MBDNF EXPRESSION IN THE SUBGRANULAR 
ZONE (SGZ) OF THE HIPPOCAMPUS DENTATE GYRUS (DG)

mBDNF plays a role in cell proliferation, differentiation, 
adhesion and maturation, which induces growth, resistance 
and regeneration of central nervous cells after injury 
(Numakawa et al. 2010). Nonexistence of mBDNF after 
TBI cause significantly neurons death in dentate gyrus (Gao 
& Chen 2009). In our study, intranasal administration of 
ACTH4-10Pro8-Gly9-Pro10 increased mBDNF expression 
significantly (p = 0.0001) compared to the sham-operated 
group and the CHI group. This increase occured in the 
endogenous mBDNF, which is beneficial, because it is 
different from the exogenous mBDNF, which cannot 
penetrate the blood-brain barrier (Poduslo & Curran 1996), 
very unstable (short half-life) (Zuccato et al. 2011), and 
can cause cross-activation nociceptors (directly or through 
p75NTR) and an inflammatory reaction (Zhang et al. 
2008b).

However, there was a significant decrease in mBDNF 
expression (p = 0.0001) in the CHI group compared to the 

sham-operated group. Previous studies in experimental 
TBI showed that there was shift regional balances in BDNF/
receptor ratios from pro-survival (mBDNF) to pro-apoptotic 
(pro-BDNF) (Failla et al. 2016). Note that Pro-BDNF 
binding to p75NTR associated to sortilin, induces apoptosis 
(Cacialli et al. 2018) and axonal degeneration (Kaplan et 
al. 2010).

INTRANASAL ACTH4-10PRO8-GLY9-PRO10 (MEHFPGP) 
INCREASES TRKB EXPRESSION IN THE SUBGRANULAR 

ZONE (SGZ) OF THE HIPPOCAMPUS DENTATE GYRUS (DG)

Activation of the TrkB receptor that has the greatest affinity 
for mBDNF (Gupta et al. 2013), has been reported to be 
associated with enhanced neuronal survival, axonal growth 
and neuronal plasticity (Atwal et al. 2000). In our study, 
intranasal administration of ACTH4-10Pro8-Gly9-Pro10 
increased TrkB receptor expression significantly (p = 
0.0001) compared to the sham-operated group and the CHI 
group.

TBI may cause a selective and downregulation of TrkB 
receptors (Hicks et al. 1998), resulting in an intrinsic 
inability of hippocampal neurons to respond to neurotrophin 
(Conte et al. 2009). In contrast to the results of our study, 
there was no significant increase in TrkB receptor 
expression (p = 0.234) in the CHI group compared to the 
sham-operated group.

INTRANASAL ACTH4-10PRO8-GLY9-PRO10 (MEHFPGP) 
INCREASES NEURAL PROGENITOR/STEM CELLS (NPSCS) 
(SOX2) EXPRESSION IN THE SUB-GRANULAR ZONE (SGZ) 

OF THE HIPPOCAMPUS DENTATE GYRUS (DG)

NPSCs are available in limited quantities in SVZ and DG; 
in vivo, NPSC at that location, characterized by expression 
of SOX2 expression (Faigle & Song 2013). Our finding 
showed that ACTH4-10Pro8Gly9Pro10 has positive effects on 
the numbers of NPSCs (SOX2 expression) which increased 

FIGURE 4. Expression of mBDNF in brain tissue 24 h after CHI (* P< 0.05)
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significantly compared to the sham-operated group 
(p=0,0001) and the CHI group (p=0,006). This increase, 
accompanied by increased expression of BDNF and TrkB 
in the intranasal ACTH4-10Pro8Gly9Pro10 group, which 
showed the involvement of BDNF/TrkB pathways in the 
NPSCs proliferation.

There was a significant increase in the number of cells 
expressing SOX2 (p = 0.0001) in the CHI group compared 
to the sham-operated control, indicating an increase in 
NPSCs proliferation after TBI. It was known that TBI 
induces proliferation of astrocytes and neural progenitor/
stem cells (Sandhir et al. 2008).

CONCLUSION

We found that ACTH4-10Pro8-Gly9-Pro10 (MEHFPGP) as a 
promising candidate in traumatic brain injury therapy, 

has a direct positive effect on the proliferation of 
endogenous NPSCs in the sub-granular zone (SGZ) of the 
hippocampus dentate gyrus (DG), through BDNF/TrkB 
pathways system. This increases the possibility of 
developing therapeutic strategies in acute phase, which 
aims in harnessing neurogenic capacity to repopulate and 
repair the damaged brain due to traumatic brain injury, 
for brain function repair. 
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