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ABSTRACT

The delay integro-differential equation for the Volterra type has been solved by using the two-point multistep block
(2PBM) method with constant step-size. The proposed block method of order three is formulated using Taylor
expansion and will simultaneously approximate the numerical solution at two points. The 2PBM method is developed
by combining the predictor and corrector formulae in the PECE mode. The predictor formulae are explicit, while the
corrector formulae are implicit. The algorithm for the approximate solutions were constructed and analyzed using the
2PBM method with Newton-Cotes quadrature rules. This paper focused on constant and pantograph delay types, and
the previous values are used to interpolate the delay solutions. Moreover, the studies also carried out on the stability
analysis of the proposed method. Some numerical results are tested to validate the competency of the multistep block
method with quadrature rule approach.

Keywords: Multistep block; Newton-Cotes rule; Volterra delay integro-differential equation

ABSTRAK

Persamaan pembezaan lengah kamilan bagi jenis Volterra telah diselesaikan menggunakan kaedah blok berbilang
langkah dua titik (2PBM) untuk langkah yang malar. Kaedah blok peringkat tiga yang dicadangkan telah dirumus
menggunakan pengembangan Taylor dan akan menganggar penyelesaian berangka secara serentak pada dua titik.
Kaedah 2PBM dibangunkan dengan menggabungkan formula peramal dan pembetul dalam mod PECE. Kaedah
peramal adalah tak tersirat manakala kaedah pembetul adalah tersirat. Algoritma penyelesaian anggaran dibina dan
dianalisis menggunakan kaedah 2PBM dengan peraturan kuadratur Newton-Cotes. Kertas ini memberi tumpuan
kepada jenis kelengahan malar dan pantograf serta nilai sebelumnya digunakan untuk menginterpolasi penyelesaian
kelengahan. Selain itu, kajian juga dijalankan ke atas analisis kestabilan bagi kaedah yang dicadangkan. Beberapa
keputusan berangka diuji untuk mengesahkan kecekapan kaedah blok berbilang langkah dengan pendekatan peraturan
kuadratur.

Kata kunci: Blok berbilang langkah; peraturan Newton-Cotes; persamaan pembezaaan lengah-kamilan Volterra

INTRODUCTION with subject to the arbitrary initial function,

The model of the delay integro-differential equation is ~ Y(¥) = ¢(x), forx € [a-1,a].

considered as follows in this study,
The 7 = 7(x) constant is a delay term, whereas the

y'(x) = f(x y(x), y(x — T)) + (1) delay argument is (x-t). The y(x-7) expression relates to
’ ' the delay solution. The approximate numerical solution
can be obtained when equation (1) reduces to a standard

X
J; K(xwy(u),y(u—n)du ,x € [a,b] initial value problem (IVP).
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y'(0) = F(x,y(x), y(x — 1), 2(x)) )
where
z(x) = f K(x,u,y),y(u—1)) du. A3)
0

Block methods have been developed which provide
a polynomial approximation to the solution of the
standard initial value problem on a mesh point with x, = a,
x, =X, x,<x <--<x, . These methods are often analyzed
with the hypothesis that the step size, / is constant.

Delay elements in the integro-differential equation
are often encountered in real-life phenomena throughout
scientific and engineering problems. Material science
(Baker 2000) and control problems (Kolmanovskii &
Myshkis 2012) range from the area covered by delayed
integro-differential equations. The delay integro-
differential equation is too complicated for analytical
solutions to be solved. In order to obtain the solution for
delay integro-differential equation, reliable numerical
schemes are necessary.

Several methods devised to treat the equation (1)
numerically have been observed in the last few decades.
Yiizbast and Karacayir (2018) used the Galerkin-like
method of Taylor polynomial to achieve an approximate
delay integro-differential solution. Ali (2009) used the
expansion method to estimate the numerical solution (1)
using B-spline polynomials. Moreover, Salih et al. (2010)
implemented a B-spline function with the Galerkin
method to test the delay integro-differential equation's
convolution type. Zaidan (2012) adapted the Bernstein
polynomial as a basic function of the Galerkin method to
approximate solution delay integro-differential equation
which contains three kinds of equation (retarded, neutral
and mixed). Mustafa and Mohammed (2018) introduced
Galerkin to solve the linear delay integro-differential
equation using the polynomial of Chebyshev.

Ayad (2001) obtained the convergence of the spline
method for nonlinear delay integro-differential equation
and solved the equation numerically. Qin et al. (2018)
studied the stability of additive Runge-Kutta methods
for delay integro-differential equation.

The multistep block method has been introduced
to solve the Volterra integro-differential equation
without delay and delay differential equation. Majid and
Mohamed (2019) developed fifth order fully implicit
multistep block method for evaluating the numerical
results of Volterra integro-differential equation without
delay. The hybrid block method with aid of quadrature
rule has been proposed by Janodi et al. (2020). Baharum,

Majid and Senu (2022) applied the diagonally implicit
multistep block method of order five to approximate the
solution of integro-differential equation of Volterra type
without delay terms. Meanwhile, Ismail, Majid and Senu
(2020) proposed hybrid multistep block method to solve
the delay differential equation.

This paper aims to investigate the delay integro-
differential equation and obtains some new numerical
results based on the two points multistep block method
with the quadrature rule. A few examples demonstrate
that the numerical results of the proposed method are
efficient.

FORMULATION OF THE METHOD

The two approximate solutions will be represented by the
first point, y  atx  and the second point,y _atx .
These two solutions will be computed simultaneously
using the 2PBM method. Furthermore, the 2PBM
method is based on the predictor-corrector method and
applied to find the solution for the standard initial value
problem of the delay integro-differential equation. The
corrector formulae of 2PBM are known as an implicit
method.

To begin the derivation of 2PBM method, the
linear difference operator, L associated with

k k

LGkl = ) ayGe+ih) = h ) By G+ i), (4)
i i=0

i=0

where y(x) is an arbitrary function and continuously
differentiable on [a,b]. The Taylor expansion substitutes
the dependent variable, y(x) and its derivatives, y'(x)
and constitutes the linear difference operator,

k

Ly@ikl = ) a (y(x) +ihy' () + 3ty + )
[

-1 f (y'(x) +ihy" () + 572" (x) + -
i=0

K 2 >(5)
The development of 2PBM method is to evaluate
y(x, ) and y(x, ), respectively, with their delay
argument and delay solution. As shown below, a linear
multistep method (LMM) (4) expanded to develop the
first-point corrector formula.

k

k-3 K
Zaiy(x+ih) =h Biy'(x+ih)+h2ﬁiy'(x+ih).
i i=0 i=2

i=2



The first point corrector formula of 2PBM generated for
the step number, £=3:

3 0 3
; a; y(x + ih) = h;ﬁi y'(x + ih) + h;ﬁi Y'(x +ih), (6)
a,y(x 4+ 2h) + azy(x + 3h) = h Boy'(x) + hBy'(x + 2h) +

hBsy' (x + 3h). @
By letting a,= 1, a, = -1, yields,
y(x + 3h) — y(x + 2h) = hByy'(x) + hB,y (x + 2h) + (8)
hBsy'(x + 3h),
y(x + 3h) = y(x + 2h) + hBoy' (x) + hB,y' (x + 2h) +

hBsy'(x + 3h). 9)

The expression of y(x + 34), y(x + 2h), y'(x), y'(x + 2h),
y’(x + 3h) will be generated by Taylor expansion,

9 27
y(x + 3h) = y(x) + 3hy'(x) + Ehzy”(x) + ?h3y”’(x),
4 8 i
y(x + 2h) = y(x) + 2hy'(x) + Ehzy”(x) + gh3y (),
4
yl(x + Zh) — yl(x) + Zh y//(x) + Eh—zy,”(x),
7 9 nr
Y'(x+3h) =y'(x) +3hy" () + 5 1y (x).

The Taylor series expansion terms are truncated at the
third derivative as the method order three. Further,
substituting the Taylor expansion into the equation (9)
and yields,

9 27
y() + 3Ry (0) +5h%y" () + Py (x)

4 8
= () + 2hy () + 3 Ry () + Sy G+ (¥ ()
1 00+ 20y )+ )

9 (10)
+hps ( Y0 +3hy" () +5 hzy”’(x)>,

9 27
Y(x) + 3h y’(x) +§h2yn(x) +?h3ym(x)

=y() +hy (x)(2+ o + B2 + B3) + Ay (x) (E + 2B, + 3:33)

" 8 4 9
+h%y" (x) (g‘l'zﬁz +§ﬁ3)- (11)
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Associating the left-hand side of equation (9) and the
right-hand side of the equation (11) would give

2+ B+ B +Ps=3

4 9
E+2ﬁ2+3ﬁ3=_

>
8+4 +9 27
6 zﬁ2 2ﬁ3_6'

Therefore, the coefficient of 5, obtained as follows,

1 7

ﬁo=—%, [32:5.

As the result, the formula could be written as

1 7 4
Yn+3 =Ynsz + h (_%Fn + EFrHZ + §Fn+3>-

By letting n — n-2, the derivation developed the first
point corrector formula of 2PBM;

1 7 4
Fao ¥ T5Fat g Fan ). (12)

C _— — —
yn+1—yn+h( 36 1 3

The second point of the corrector method is derived as
follows on the basis of LMM,

k-2 k k-4 k
a;y(x+in)+ ) ayy(x+ih)=h ) Biy'(x+ih)+h ) B;y' (x +ih).
Taking the step number, k = 4, will be;

2

4
Zaiy(x+ih)+2aiy(x+ih)=

i=2 i=4
0 4 (13)
hz Biy'(x + ih) + hZ[a’i ¥ (x + ih),
i=0 i=3
ayy(x + 2h) + a,y(x + 4h) = h By’ (x) +
(14)
hBsy'(x + 3h) + hB,y'(x + 4h).
Hence, letting @, = 1, a, = -1,
y(x +4h) — y(x + 2h) = hfBoy'(x) + (15)

hBsy'(x + 3h) + hB,y' (x + 4h),

y(x +4h) = y(x + 2h) + hfoy' (x) + (16)

“hB3y'(x + 3h) + hB,y' (x + 4h).
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Taylor expansion is chosen to be expanding the terms
of y(x) and y'(x), and the terms are truncated at third
derivatives since the proposed method of 2PBM will be
derived as the third-order method.

16 64
y(x + 4h) = y(x) + 4hy' (x) + 7hzy"(x) + ?h3y’”(x),
4 8
y(x 4+ 2h) = y(x) + 2hy’ (x) + Ehzy”(x) + ghSy”’(x).
9
Y'(x+3h) = y'(x) + 3h y" () + 5 h?y" (%),
16
Y'(x+4h) = y'(x) + 4h y" () + - h2y" ().

Substituting the Taylor expansion toward equation (16)
and yields,

16 64
Y() + 4hy'(2) + 2y () + == Py (x)
1 4 2,01 8 3,111 12
=y () + 2hy"(x) + 5 h5y" () + 2 h°y™ () + hBoy' (x)
9
+ hps <y'(X) +3hy"(x) + Ehzy”’(X)>

16
+hB, (y’(x) +4hy"(x) + 7h2y”’(x)),

16 64
y(X) + 4'hy’(x) + 7thH(x) + ?hS:ym(x)

=y(0) +hy' (x)(2+ Bo+ B+ Bu) + (17)

A 8 9 16
h%y" (x) (E +3p5 + 4,34>+ h3y"" (x) (g + 533 + 7,84)-

Equating equation (16) with both the left and the right
side of equation (17) would give

2+ Bo+ B3+ Bi=4

4 16
E+3ﬂ3+4ﬂ4=7:
8 9 16 64
€+Eﬁ3 +734—€'
thus,
1 _ 16 _
.BO 18' B3 - 9 ’ .84— -

The formula can be written

1 16 1
Yn+a = Ynt+2 T h(EFn +?Fn+3 +an+4>

The second point corrector formula can be established
after letting n—n-2,

piz = +h(iF +EF +1F ) (18)

Yn+2 = In 18 n-2 9 n+1 6 n+2 |-
Therefore, the first point and second point predictor
formulae of 2PBM will be derived using similar
procedure as the corrector formulae. However, the way
to predict y5,; and y5., is to use an explicit method.
In order to satisfy the explicit formula, the derivation of
the predictor formulae will be one order less and need
fewer point than the corrector formulae.

Thus, the predictor formulae can be generated
based on the LMM as follows for the first point predictor
formula,

3 1
DayGe i) =hY iy G+ ih),
i=0

i=2

and the second point of the predictor formula as below,

2

4 1
Z a;y(x + ih) + Z a;y(x +ih) = hZﬁiy’(x + ih).
i=4 i=0

i=2

Despite the predictor formula being of order two, the
Taylor expansion terms will be truncated at the second
derivative. Therefore, the predictor formulae would be
determined as follows,

3 5
Yns1 = Yn +h(__ n-2 +_Fn—1>: (19)
2 2
y1f+2 = Yy + h(—4F,_; + 6F,_1). (20)
Formulae for the 2PBM
Predictor,

) 3 5

Ynt1 =Yn T h (__Fn—z + _Fn—l)'
2 2

yrz;+2 =Yn + h(_4Fn—2 + 6Fn—1)-

Corrector,

c 1 7 4
Yn+1 =¥n t h(_an—Z +<F +_Fn+1>'

12 9
. 1 16 1
Yn+2 = In + h(EFn—Z + ?Fn+1 +an+2)-

ORDER OF THE METHOD
By using the matrix difference equation, as shown below,
the derived method could be construed.

QYN = ﬁhFN, (22)



where,
F,
[J’n—z] |' n—z]
| Vn-1] | Fr-1|
YN=|yTl |, FN:| Tll-
lyn+1J |Fn+1|
yTL+2 [Fn+2J

The 2PBM method can be indicated in the form of the
LMM (4). The general version of (5) can be represent as

Lly(x); k] = Coy(x) + C1hy'(x) + Ch%y" (x) +

...+Cphpyp(x)+...' (23)
whereas
& dPa . a®-vp,
Cp = Z | — r=012, .. (24)
& p! — (p— 1!

where a, f, are, respectively, the vector columns of the
2PBM method in the matric form.

Definition 1

The LMM is order p where C, = C,=C, == Cp_1 = Cp
=0and C . #0, respectively, (Lambert 1973).
Consequently, in the matrix difference form, the derived
method is drafted as (21)

[}’n—z]
HE N
00 -1 0 uf, " (25)
Vn+2
L, 74 lfin 21|
Ll 36 0 12 9 o
N a"
18 9 Fn+1
n+2

The associated set of coefficients from equation (24)
implemented to achieve

:dz“o_ad_an+a1+az+a3+a4_[0]+[g]+[j]+[;]+[g]=[g],

St 5 d°
Zl— Zaﬂd=0a0+1a1+2az+3a3+
d=0 d=o

= (Bo+ Py + Ba+ Bz + B,

16

+§)4ﬂ

=1[g]+2[:ﬂ+3[ ]+4[O] (
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e Bl -
(1[g]+2f+3 4Z>=[g].

12
4 4
2% D% L
3% 21Pa
d=

(13ay + 23a, + 3%a; + 43a,) — —(12[31 + 228, + 3265 + 42B,),

9
16| T
9

d
1
6

S GHEE e ERr IR (ﬂﬂ+ﬁ§
3 +ff) -t

4 d4‘ 4 d3
Cy = ZE% —Zgﬁd
a=0 a=0

1 1
= ﬁ(l‘*a1 +2%a, + 3*a; + 4*a,) — g(13ﬁ1 + 236, + 3385 + 4°B,),

TN e W R )

+ 32

1 3[0 31 3g 3(1]
-<(1 o] +2 2 3|+ !
5
570
9
while C,#0.
5 217
Cror=C _[__ _] 26
p+1 4 72 9 ( )

Regarding Definition 1, the 2PBM method can be
concluded that it satisfies an order three and C .\ is the
vector of the error constant.

Definition 2
The LMM is consistent if the method holds an order of at
least one (Lambert 1973).

Recognizing the order of method is three, which is greater
than one, thus this proposed method is consistent.
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Definition 3

The LMM is zero-stable if the first characteristics
polynomial p(r) specified as p(r) =
det|2§-‘=0 A(j)T(k_j)| = 0 having roots such that \rj <1
and if |r/_ | = 1, the multiplicity must not exceed two. The
roots define as r where j =1, 2, ..., k.

Zero stability examines method stability at step size limit
h — 0 while the stability theory investigates method
stability if h is a fixed non-zero value.

The 2PBM method can be drafted in the following matrix
form,

A%, — AY,_, =0,
~ (27
b bal-l W[5 1=0

The first characteristics polynomial examined to explain
the zero stability as follow,

p(r) = det|A%r — Al| =0,

=detlfy 3= 4l
=r(r-—1).

Since | ;| < 1, the method achieved zero stability.

Definition 4
The LMM is convergent when it satisfies with zero-stable
and consistent of the method.

The zero-stable and consistency of the method have
been proved previously, hence, the 2PBM method is
convergent.

IMPLEMENTATION

There are three parts of implementing the delay integro-
differential equation in this study. The implementation
of the proposed method uses C code to approximate the
numerical solution of the problem.

The procedure consists of locating the delay
arguments to determine the delay solution. The solution of
delay depends on the location of (x - 7). The location may
recall the previously calculated delay solution y(x -
7) stored since the constant step size implementation.
Furthermore, the initial function, ¢(x) implemented to
compute y(x - 7) when (x - 7) < a. If (x - 7) > a, Lagrange
interpolation polynomial will be adapted in finding the
solution for the delay solution y(x - 7).

Therefore, the 2PBM method will compute the
approximate solution for the delay integro-differential

equation. The implementation of the 2PBM method is
achieved by analysing the numerical scheme used to solve
the ODE part of the delay integro-differential equation.

Some numerical integration methods are adapted to
deal with an integral part of the delay integro-differential
equation since it is impractical to solve this part explicitly.
Consequently, the formula of the numerical integration
method uses is composite Simpson rule, and it can be
written as follow;

n+1

h
Zny1 = § Z wis K(xn+1' Xi, Y(xi); ydelay (xi))'
i=0

n+1

h
Zn42 = §Z wis K(xn+1'xir y(x), ydelay(xi))

=0

h
+ g (K(xn+2' Xn+1, y(xn+1)' ydelay (xn+1))
+ 4K (xn+2: xn+%’ y(xn+%): YVdelay (xn+%))
+ K(xn+2: Xn+2s Y(xn+2)' Ydelay(xn+2))>'

where the @’ are Simpson's rule weight, 1,4,2,4,...,2,4,1.
The unknown value of yn+% evaluate by quadratic
interpolation,

1 5 15 5
y 3= Eyn—l _Eyn +?Yn+1 +Eyn+2-

ns

The procedure is repeated, and the details of the method
as described in the algorithm.

STABILITY REGION

The following test equation evaluated the stability
properties of the proposed method,

X

Y@ ==+ [y du @)
0
Assume 7= mh where the internal staged are not required
to estimate y(x - 7) and substitute y(x - 7) = ¥, . Following
the multistep method in the matrix form;

2 2
Z A Yk = hz By Fy+k» (29)
k=0 k=0
AOYN + A1YN+1 + A2YN+2 = hBOFN + (30)

hByFyy1 + hBoFy .o,

where



_ Yn-3 _ Yn-1 _ Yn+1
YN - yn—Z]' YN+1 N Yn ]’ YN+2 - [yn+2]'
[F, F, F,

Fy = |3 F _[ n-1f F — n+1]‘
N .Fn—Z N+1 Fn N+2 Fn+2
_[0 O _ [0 - 1 0
AO_[O ol M [0 —1]' AZ_[O 1)

-0 ! 7 4 0
Bo = Pl B= E]' B= |16 1|

0o — 0 0 — -

L 18 9 6

From the test equation (28), we obtain

X

Fy=y'(0)=&x—1)+v f y@w) du,
0

€2))

X
Fy=¢&Yy_m + vfy(u) du. (32)
0
The numerical integration method will be adapted into
an integral part of the delay integro-differential equation,
and Simpson's rule will be applied;

X

fy(u)du=h(

0
By implementing the test equation into the 2PBM method

and yield;

1 4 1
§YN—2 +_YN—1 + §YN

y ) (33)

Ao¥y + A1Yyi1 + Ao¥ns

1 4 1
= hBy | &Yy + VR (— Yooz +=Yy_1 + =Yy

3 3 3

)> (34)

1 4 1
sv-1 5+ 3
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Rearranging the equation yields,

1 1 4
(Az - §Hsz) Yyio + (A1 - §HZBI - §Hsz) Vi1

4 1
—H,B, — §Hsz) Yy +

1
+ (AO —3H:Bo =3

4 2 1.2
(—§Vh BO - §Vh Bl) yN—l
L (35)
+ (‘thZBo) Yn-2 = &hBoYni2om —

§hB1Yni1-m — §hBoYy_m = 0. (35)
Substituting H, = ¢h, and H, = vi?,
1 1 4
(42 = 5H2B2) Vara + (41 = 5 HoBy — S HoBy ) Vi

1 4 1
+ (AO —§HZBO - §H231 _§HZBZ) Yn

u i

1
+ (=5 HaBo) Yoz = HaBo¥iss m =

4HB 1HB
—R112b0 =5 25y
3 3 (36)

—HyB1¥Yy11-m — H1BoYy—m = 0.
Therefore, the stability polynomial determines as follows;
1
T[(Hl, Hz,' r) = det <(A2 - §Hsz) rmt2 +

1 4
e

4
_HZBl —

1 1
+ (AO —3H:Bo—3 §H232)rm + (37

4 1By £+ vh )) 4 1
1<5 N+1-m 3 33 (——H280 ——HZBl) pm-t
8 s (5 1) oy
_m+Vvh{z = = ,
2\ e 3N T3 N T3 + (—§H280)rm‘2—Hler2 — H,Byr! —HlBor").
Hl
T T T T T T T T T
0.8 -0.6 -04 -02 0 02 04 0.6 0.8
~04 §
%
OO
-08 + o
<o
8
,l -
&‘9&
] &
7172 -
H

FIGURE 1. Stability region in the H - H,plane
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Consider the numerical stability region for fixed m=10.

mw(Hy, Hy; 1) =

2 28 2 2 4 62

- 4H2__ 3H2 — ZHZ Z4H2__ 23H2__ 221_12
27" i T gy gy i e Ty m g vy m gy i
472 62 4 2 4

_ g2 2% 202 T 192 182 L = a4y
2a3’ Mgy gyt ey L
8 40 40 4 11

=37 ity — gy HiHy — oo Hi Hy + oo O Hy — 2ot tHy
4 1 11 34 14
- §r13H1 - 1—8r12H1 - 5—4r“H2 - ﬁTBHz —2r¥2f, — ﬁr“H2

1
—arZOHZ + 24— 23 =

(3%)

The boundary locus technique of the absolute stability
region in /- H, plane illustrated by replacing » with
-1,0, 1 and » = cos € + i sin 0 for 0 < 6 < 27 in stability
polynomial. The region’s points obtained by separating
the real and the imaginary part of » = cos 8 + i sin 6
was then solved simultaneously. The stability region is
absolutely stable as the set of all roots in the stability
polynomial satisfies |r| < 1 and lies within the region's
boundary in Figure 1.

CONVERGENCE OF THE METHOD

This section will discuss the convergence of the 2PBM
method. The efficiency of implementing the 2PBM
approach to any differential problem can be explained
by studying the convergence of the method. The method
is said to have converged when the approximate values
produced are closer to the exact values given as:

}lll;% Yn+1 = Y(xn+1)'
}li_r)% Yni2 = y(xni2), (39)

}li_l)% Znyz = z(Xn42),

where Y

.Y . ,and Z _ are the approximate solutions.
Hence, the approximate solution for Z _, will be referred
to Simpson’s rule and the formulae of the 2PBM and

Simpson’s rule are given as follows by letting Y(x . )

n+1°

1 7 4
Fn—z +EFn +§Fn+1)r

Yn+1 = Yn+h(—%

1 16 1
Yiia =Y + h(EFn—Z +?Fn+1 +6Fn+2)-

1 4 1
Zny2=Znt+h (§ Yo+ §Yn+1 +§Yn+2)-

While, the exact solution will be acknowledged as
follows,

1 7 4 5
Y0mer) = YG0n) + b (=52 faa + 5 fo + 5 Fr ) = 2 KV O(8),
1 16 1 2
Y(ni2) = Y0) + (5 fus + s + g fase) + 5 YO8,
~ (1 4 1
2tns2) = 200) + R (37 00) + 33 (o) + 5 Cne2)) =
1
—_pSYy®
SShY O ).
As the result of Lipschitz condition,
|y’(xn) - Y’nl = |f(x' y,(xn)' y’(xn+m)' Z(xn)) -
F(x, Yri' 7';+m'Zn)| < lenlﬂ
|Z’(xn) - Zr’1| = |f(X, y(xn)' y(xn+m)' Z,(xn)) -

F(x, Yo, Yosm Z'0)| < Llayl.

where d_ will refer to the function y and a, will represent
the function z. As shown below, the approximate solution
subtracted from the exact solution.

Y(xn+1) =Y
1 7 4
= Y0) = Yo+ (= 3o hface + 5+ 5 fasr)

1 7 4 5 , @
- (—%hp,,_2 + 3 hE 5th+1) - YO (L),
Y(xn+2) = Yz
1 16 1
= Y0 = Yo+ (g5 hfaca + - fass + g hfora)
1 16 1 2
- (E Ry + 5 hFoss + gth+2) FSHYOE),
Z(xn+2) ~Zn42
1 4 1
= 206) = Zn + (hyCon) + 53 A Conn) + 5hYConr2))

1 4 1 1
- (— Y, + = hYsy + —hym) 55 YOt

3 3 3
DenOtingy(xn+l) - Yn+l: n+1° y(xn+2) - Yn+2:dn+2’y(xn)
-Y =d ,...,hencez(x , ,)-Z  ,=a, ,and attain,

5
Idn+1| < |dn| _ﬁh4|y(4)(tn)|’
2 4|y (4)
|dn+2| < |dn| +§h |Y ('tn)l'

1
|an+2| < |an| _%hsly(s)(tn)l-



and as 7 — 0 would give,
|dn+1| < |dn|zyn+1 —Yn+1 S Yn ~In =>Yn+1 - Yn < Vn+1— Yoo

|dn+2| < |dn|:Yn+2 —Ynt2 = Yn ~Vn 2Yn+2 - Yn < Yn+2 = Yo

|an+2| < |an| ﬁZn+2 —Zpy2 < Zn - Zn:Zn+2 - Zn < Znyz — Zn

which demonstrates that the approximate and exact
solutions are equivalent. Hence, |d , |<[d |,|d . ,|<
|d |and |a | <|a, | satisfy the convergence condition in
equation (39). Therefore, the 2PBM is considered to be

converged.

ALGORITHM OF THE 2PBM METHOD
Step 1: Set N, x,=a,x, =b, h=b—a,y =y(x), z,=
2(x,, ¥(x,)))- N

Step 2 : For n =0, compute delay argument, (x - 7), delay
solution, y(x - 7) and function F,.

Step 3 : For n =1 to 2, enumerate x, = x+ nh, the starting
value using Runge-Kutta method as the ODE part and
Simpson's 1/3 rule for the integral part. Compute the
delay solution y(x, - 7) and the function F'.

Step 4 : Setn =3,

Fori=0to 2, enumerate x,, , =x + ih.

Step 5 : Compute the predictor approximation for y”?
and y? , as follows,

P 3 5
Y41 =Yn Tt h(_EFn—Z +§Fn—1>r

y1f+2 = Y + h(—4F,_, + 6F,_4).

- Locate the position of the delay argument y(x - 7)
via the initial function.

- Use the composite Simpson’s rule to approach the
integral part and estimate the /7, and F/” .

Step 6 : Compute the corrector approximate solution for
Yner and yrio

1 7 4
V41 =Yn t h(_%Fn—Z +EFn +§Fn+1)'

. 1 16 1
Yn+z =Y+ h (EFn—z + ?an + an+2)-

- Locate the delay argument position and compute
the delay function, y(x - 7) use the the initial function.
- The composite Simpson’s rule is implemented for
the solution of the integral part and estimate the
Fiyq and FS,.
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Step 7 : Repeat Step 4-6.

Step 8 : Complete.

ALGORITHM OF THE RKS METHOD
Step 1: Set N, x, =a, x, =b, h=b—-a,y =yx), z, =
2y YO Yy () N

Step 2 : For n=0, compute delay argument, (x-7), delay
solution, y(x - 7) and function F,.

Step3: Forn=0, ..., N,
Compute the numerical solution for the Runge-Kutta
3% order.

Step 4: ki =hF (xnry(xn)fydelay(xn)'i(xn))'
Step5: k, = hF (xn%, y:%, y;;;yb,zz+%),
where,

b _ o h
X 1=Xxpt+7, yn+l=yn+zk1,
2

- Locate the delay argument, (x 1— ‘[) and calculate

ns

the delay solution, yz5;o,° (xn+l - r)
2

h
~b _ s ~b
Zn+% ) <yn + yn+%>'
Step 6 :
k3 = hF(xn+1; }7711)4.1! }’delayplzrz:+1)'

where,

Xns1 = Xp +h, $P.1 = P — hky + 2hk,,

- Locate the delay argument, (x,,, — 7) and calculate
the delay solution, y272 P (xp44 — 7)

. hi o -
Iy = 3 <Yn + 4}’:% + yrzz+1>'
Step 7 : Thus, the third order Runge-Kutta
h
Yne1 =Yn t g[k1 + 4ky + k).

Step 8 : Locate the new delay argument when x__  and
find the delay solution, yge4y (311 — T)-

Step 9 : For z, where n = 0, the trapezoidal rule will be
applied since there is not enough point to calculate,

h
z; = E()’o +y1).
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For n=1, Simpson’s rule will be applied to approximate
the integral component

h
Zn+1 = §(yn + 4YVns1 + Yns2)-

Step 10 : Hence, estimate the F¥
Step 11 : Repeat Step 3-10.
Step 12 : Complete.

ALGORITHM OF THE ABMS METHOD
Step 1 : Set N, X, =a x = b, h= b—a,yo :y(xo),zo =
2(x, ¥ (x,))- N

Step 2 : For n=0, compute delay argument, (x - 7), delay
solution, y(x - 7) and function F|.

Step 3: Forn=1,
X, =x,+h,
yn+l :yn + hFO’
Approximate y,, (x, .- 1),
_ h elay n
Zn+l_5(yo+y1 )
Calculate F(x,, y,, ,,,, X, - 0, 2))

Step4: Forn=2,...,N.
xn+l:xn+nh’

Applied Adam Bashforth two-step explicit method,

h
y1117+1 =Yn + E (SF(xn' Yo ydelay(xn - T):Zn)
- F(xn—l' Yn-1r ydelay(xn—l 1), Zn—l)):

Locate the delay argument and approximate y ? delay
(xn w17 T)’

h
Zhi, = 3 (Yn—l +4yn + y1f+1)’

p p p
Calculate FP (xn+1'yn+1'ydelay(xn+1 - T)' Zn+1)'

Step 5 : Applied Adam Moulton two-step implicit
method,

Yrs1 = Yn + 1_/12 (5Fp (xn+1'y‘rll)+1'y;elay(xn+l - T)'Zr’:+1)
+ 8F (%, Yo, Vaetay (tn — ), )
— F(Xn-1, Yn-1 Yaetay n-1 — T)'Zn—1))»
Locate the delay argument and approximate
y&elay(xn+1 - T);

h
Zpyp = 3 V-1 + 4V + Yrs1)s
Calculate Fc(xn+lr yz+1iy§elay (Xn41 — 1), Zrcl+1)~
Step 6 Repeat Step 4-5.

Step 7 Complete.

TABLE 1. Comparison of the numerical results for solving Problem 1

Absolute error at 2= 0.1

* 2PBM Galerkin RKS
0.0 0.0000(+00) 1.3900(-02) 0.0000(+00)
0.1 4.0277(-06) 7.0000(-05) 6.9444(-08)
0.2 2.2222(-06) 1.3760(-02) 2.7777(-07)
0.3 2.2222(-06) 2.1420(-02) 1.2708(-05)
0.4 2.2222(-06) 4.1420(-02) 6.2222(-05)
0.5 2.2222(-06) 5.5250(-02) 2.2159(-04)
0.6 2.2222(-06) 6.9080(-02) 6.1416(-04)
0.7 2.2222(-06) 8.2910(-02) 1.4532(-03)
0.8 2.2222(-06) 9.6740(-02) 3.0422(-03)
0.9 2.2222(-06) 1.1057(-01) 5.8143(-03)
1.0 2.2222(-06) 1.2440(-01) 1.0333(-02)
TS 6 - 10
TFC 19 - 40




TABLE 2. The numerical results of 2PBM at different step size, 4 for Problem 1

Absolute error at 7= 0.1

X
Exact 0.1 0.01 0.001
0.0 1.0000 0.0000(+00) 0.0000(-+00) 0.0000(-+00)
0.1 1.1000 4.0277(-06) 4.0277(-11) 2.2204(-16)
0.2 1.2000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.3 1.3000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.4 1.4000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.5 1.5000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.6 1.6000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.7 1.7000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.8 1.8000 2.2222(-06) 2.2222(-11) 2.2204(-16)
0.9 1.9000 2.2222(-06) 2.2222(-11) 2.2204(-16)
1.0 2.0000 2.2222(-06) 2.2222(-11) 4.4408(-16)
6 *““—*—7'—";*————*-———-*————-u————*-———+———-*-—--¢
10°r s 1
§ ",.-+’
5 -
g 108k 1
o
(2]
Q0
<
1 0-1 0L 4
L“‘*—.‘l A A A A A A A 1§
12 L 4
10 — *=:2PBM at h=0.1
—&— 2PBM at h=0.01
e 2PBM at h=0.001
1014 ¢ —&— Galerkin 3
-+-"RKS
U N ST, S S S e S, S, S, S
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X

FIGURE 2. Performance graph of numerical results for Problem 1
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NUMERICAL RESULTS AND DISCUSSION

Numerical results of 2PBM for solving Problem 1 - 6
are summarized in Tables 1 - 10. The algorithm has been
implemented using C language with constant step-size.

Problem 1
Consider (Zaidan 2012) for the constant delay type,

x
4

x
y'(x) = 1—?+fxuy(u-1) du,
0

p(x) =x+1, -1<x<0.

where ¢(x) is an arbitrary initial function for x€[-1,0],
that is continuously differentiated. The exact solution is
yx)y=x+1for0<x<I.

In Table 1, it is observed that the absolute error of 2PBM
is smaller compared to Galerkin method and RKS method

using 2= 0.1. Moreover, in contrast with other methods,
2PBM obtained less function calls to complete the
computation. Table 2 shows that as the step-size becomes
smaller, the 2PBM achieves better accuracy. Figure 2
illustrates the absolute errors for the 2PBM at different
step sizes compared to the existing results when 4 =0.1.

Problem 2
Consider (Salih et al. 2010) for the constant delay type,

X
1 1
y’(x)=1+x+x2—xy(x—5)+fe(x_“)y(u—5) du,
0

S =x+1,

1< <0
2 2=*=%

where ¢(x) is an arbitrary initial function for x € [— %, 0],

that is continuously differentiated. The exact solution is
— 1 1

y(x)=e'- 5 for [0, 5].

TABLE 3. Comparison of the numerical results for solving Problem 2

Absolute error at 2= 0.05

' 2PBM Galerkin RKS
0.00 0.0000(+00) 1.3900(-02) 0.0000(+00)
0.05 7.9195(-06) 5.0000(-04) 8.7243(-08)
0.10 5.6958(-05) 6.0000(-04) 2.8427(-06)
0.15 5.6482(-05) 3.0000(-04) 9.4990(-06)
0.20 5.8511(-05) 1.0000(-04) 3.2361(-05)
0.25 5.7985(-05) 5.0000(-04) 8.6838(-05)
0.30 6.0228(-05) 1.0000(-04) 2.0013(-04)
0.35 5.9648(-05) 4.0000(-04) 4.0332(-04)
0.40 6.2128(-05) 1.0000(-04) 7.4008(-04)
0.45 6.1487(-05) 1.0000(-04) 1.2587(-03)
0.50 6.4228(-05) 2.8000(-03) 2.0123(-03)
TS 6 - 10
TFC 14 - 30




TABLE 4. The numerical results of 2PBM at the different step size, / for Problem 2

Absolute error at different /

X

X
Exact 0.05 0.005 0.0005
0.00 0.5000 0.0000(+00) 0.0000(+00) 0.0000(+00)
0.05 0.5513 7.9195(-06) 5.6264(-08) 5.6267(-11)
0.10 0.6052 5.6958(-05) 5.7010(-08) 5.7015(-11)
0.15 0.6618 5.6482(-05) 5.7794(-08) 5.7802(-11)
0.20 0.7214 5.8511(-05) 5.8618(-08) 5.8629(-11)
0.25 0.7840 5.7985(-05) 5.9485(-08) 5.9498(-11)
0.30 0.8499 6.0228(-05) 6.0395(-08) 6.0412(-11)
0.35 09191 5.9648(-05) 6.1353(-08) 6.1373(-11)
0.40 0.9918 6.2128(-05) 6.2360(-08) 6.2383(-11)
0.45 1.0683 6.1487(-05) 6.3418(-08) 6.3444(-11)
0.50 1.1487 6.4228(-05) 6.4531(-08) 6.4561(-11)
10 . . ,
—
10°F T 1
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i ,_,_0‘\ ///'é‘\. ~ - ‘7,,,,-'@\.\ \\
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FIGURE 3. Performance graph of numerical results for Problem 2
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Tables 3 - 4 display the numerical results for solving
Problem 2. In Table 3, the 2PBM outperforms B-spline
and RKS methods in terms of accuracy when /2 = 0.05. In
Table 3, the total function calls and total steps are lesser
for 2PBM compared to RKS. As the step-size getting
smaller, the 2PBM achieves better accuracy, as seen in
Table 4 and Figure 3.

Problem 3
Consider (Salih, Hassan & Atheer 2014) for the constant
delay type,

1 1 x 1
y'(x) =§(1—x+ex)—xy(x—§)+fe(x—u)y(u_§) du,
0

1 1
¢(x):€x—z, —ESXSO,

where ¢(x) is an arbitrary initial function for x € [— % 0],
that is continuously differentiated. The exact solution is

»x)=x "E for [0, ﬂ

TABLE 5. Comparison of the numerical results for solving Problem 3

Absolute error at 2= 0.05

2PBM ABMS RKS
0.00 0.0000(+00) 0.0000(+00) 0.0000(+00)
0.05 5.0633(-06) 9.8970(-07) 2.1975(-08)
0.10 3.4984(-05) 5.6884(-11) 8.2500(-06)
0.15 3.4984(-05) 8.7975(-04) 2.6635(-05)
0.20 3.4984(-05) 5.5898(-04) 9.1273(-05)
0.25 3.4985(-05) 4.7720(-04) 2.1488(-04)
0.30 3.4985(-05) 3.9257(-04) 4.4532(-04)
035 3.4985(-05) 2.1518(-04) 8.0816(-04)
0.40 3.4985(-05) 1.2670(-04) 1.3652(-03)
0.45 3.4986(-05) 1.1482(-04) 2.1574(-03)
0.50 3.4989(-05) 2.1016(-03) 3.2631(-03)
TS 6 10 10
TFC 19 26 30
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TABLE 6. The numerical results of 2PBM at the different step size, / for Problem 3

Absolute error at different /

Exact 0.05 0.005 0.0005
0.00 0.5000 0.0000(+00) 0.0000(+00) 0.0000(+00)
0.05 0.5513 5.0633(-06) 3.3822(-08) 3.3708(-11)
0.10 0.6052 3.4984(-05) 3.3822(-08) 3.3708(-11)
0.15 0.6618 3.4984(-05) 3.3822(-08) 3.3708(-11)
0.20 0.7214 3.4984(-05) 3.3822(-08) 3.3708(-11)
0.25 0.7840 3.4985(-05) 3.3822(-08) 3.3708(-11)
0.30 0.8499 3.4985(-05) 3.3822(-08) 3.3708(-11)
0.35 0.9191 3.4985(-05) 3.3823(-08) 3.3708(-11)
0.40 0.9918 3.4985(-05) 3.3823(-08) 3.3708(-11)
0.45 1.0683 3.4986(-05) 3.3823(-08) 3.3708(-11)
0.50 1.1487 3.4989(-05) 3.3823(-08) 3.3708(-11)

In Table 5, the numerical results show that the 2PBM the 2PBM achieves smaller absolute error as the step size
achieved better accuracy, less total function calls and total decreases, as presented in Figure 4.
steps compared to ABMS and RKS. Table 6 shows that

S
3
£
E
(=]
«w
=
<
— %= 2PBM at h=0.05
10°F —&— 2PBM at h=0.005 |1
e 2PBM at h=0.0005
—#—ABMS
10710 ¢ -+~ RKS 4
e g e S e e doin L e *
1041 | | | | | | | |
005 01 015 02 025 03 035 04 045 05
X

FIGURE 4. Performance graph of numerical results for Problem 3
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Problem 4

Consider (Ayad 2001) for the pantograph delay type,

X

Y (x) =y (f) e D r14 Jy(u) du,

2

P(x) = e”,

0

x <0,

where @(x) is an arbitrary initial function for x < 0, that
is continuously differentiated. The exact solution is y(x)

= ¢* for [0,1].

TABLE 7. Comparison of the numerical results for solving Problem 4

Absolute error at 2= 0.1

X
2PBM ABMS RKS
0.00 0.0000(+00) 0.0000(+00) 0.0000(+00)
0.1 1.4244(-02) 1.1000(-01) 5.6666(-02)
0.2 1.1776(-02) 1.2000(-01) 1.4886(-02)
0.3 1.4356(-02) 1.4000(-01) 1.0439(-02)
0.4 5.6342(-02) 1.5000(-01) 1.9222(-02)
0.5 1.0513(-02) 1.8000(-01) 4.3551(-02)
TS 4 - 5
TFC 5 - 11
107 F e
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FIGURE 5. Performance graph of numerical results for Problem 4



Problem 5
Consider (Ayad 2001) for the pantograph delay type,

v =y Q) —er v+ f O a

x <0,

P(x) = e,
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where ¢(x) is an arbitrary initial function for x < 0, that
is continuously differentiated. The exact solution is y(x)
= ¢* for [0,1].

TABLE 8. Comparison of the numerical results for solving Problem 5

Absolute error at 7= 0.1

' 2PBM ABMS RKS
0.00 0.0000(+00) 0.0000(+00) 0.0000(+00)
0.1 2.3952(-02) 1.1000(-01) 8.5635(-02)
0.2 3.8781(-02) 1.2000(-01) 6.4571(-02)
0.3 1.0110(-01) 1.4000(-01) 9.6081(-02)
0.4 2.4317(-02) 1.6000(-01) 1.0025(-01)
0.5 4.0750(-02) 2.0000(-01) 1.1921(-01)
TS 4 - 5

TFC 5 - 11

Tables 7 - 8 show the numerical results for solving
Problem 4 - 5, respectively, using 2PBM, PSOSM and
ABMS methods. In the previous work (Ayad 2001), the
author computed the approximate solutions for solving
Problems 4 - 5 using PSOSM for x €[0,0.5], and the
comparison is made based on the interval of x in the
previous work. We could observe in Tables 7 - 8§, the
accuracy of 2PBM is better compared to PSOSM and
ABMS methods. The plot of absolute errors in Tables
7 - 8 can be referred in Figures 5 - 6, respectively. Table
9 display the results of 2PBM is able to achieve smaller
absolute error as the step size decreases, as presented in
Figure 6 compared to PSOSM and ABMS.

The order of convergence (OC) was identified by using
the general formula of

1 (MAXE for hl)
8\MAXE for h,

hy
log (hz)

The order of convergence has been calculated for
four problems i.e., Problem 1 - 3 and Problem 5 when
solving using 2PBM method. Problems 1, 2, and 3 have
produced third order accuracy while Problem 5 could not
achieve the third order accuracy due to the pantograph
delay type problem. The pantograph delay solutions are
being estimated with lower order Lagrange interpolating

polynomial from the first iteration (at the beginning of
the interval), thus the accuracy of the 2PBM is affected.

oC =
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TABLE 9. The numerical results of 2PBM at the different step size, /4 for Problem 5

Absolute error at different /

x Exact 0.1 0.01 0.001
0.00 1.0000 0.0000(+00) 0.0000(+00) 0.0000(+00)
0.10 1.1051 2.3952(-02) 4.5491(-03) 4.5916(-04)
0.20 1.2214 3.8781(-02) 5.5015(-03) 4.7452(-04)
0.30 1.3499 1.0110(-01) 5.8210(-03) 4.8962(-04)
0.40 1.4918 2.4317(-02) 6.2209(-03) 5.0380(-04)
0.50 1.6487 4.0750(-02) 6.6493(-03) 5.1625(-04)
0.60 1.8221 5.5280(-02) 7.1018(-03) 5.2602(-04)
0.70 2.0138 7.7750(-02) 7.5974(-03) 5.3192(-04)
0.80 2.2255 4.2487(-02) 8.1185(-03) 5.3280(-04)
0.90 2.4596 5.7062(-02) 8.6800(-03) 5.2685(-04)
1.00 2.7183 3.1292(-02) 9.2596(-03) 5.1227(-04)

Problem 6

Consider the nonlinear case of Volterra’s population

Ni(x) = Ny (x) <€1 = y1N2(x) —J- Fi(x —u) Ny(w) du

X-T

)

systems of ‘predator-prey’ with constant delay
(Shakourifar & Dehghan 2008), in the form

N3(x) = Ny(x) (_Ez +y2N1 (x) + f Fy(x —u) Ny () du>,
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FIGURE 6. Performance graph of numerical results for Problem 5



with the following set of parameters,

6 =002 =10, y, =10, y, =10, T=02, X =20.

The initial functions are ¢, (x) = ¢, (x) = 3.0, x € [-7, 0]
and F] (x) = F2 (x) = %x3e_3x.

This problem does not have an exact solution.
N, (x) and N, (x) represent the size of two populations

3
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FIGURE 7. Prey populations

4143

(prey and predator) at time x > 0. These equations can be
naturally extended to describe the dynamics of ecological
systems with multiple species. Various generalizations
of Volterra’s integro-differential system serve as the
foundation for mathematical studies of ecological
and chemostat delay models. The delay in chemostat
models indicates that a specie’s growth depends on the
concentration of nutrients in the past.

s 7 \

25 »

Predator population, N 2{:(}
rd

0 02 04 06 08 1 12 14 16 18 2
Time

FIGURE 8. Predator populations

TABLE 10. Approximate solutions using 2PBM method

Remarks Mesh size N, (2.0) N, (2.0)
Sample meshes 20 0.018848615861546 0.980298733086037
40 0.018548158536900 0.981326160958517
80 0.018484849739939 0.982598239403244
160 0.018455005503500 0.983321844586489
Figures 7 and 8 illustrate the population of predator CONCLUSIONS

and prey changes over time. In Table 10, a few samples
mesh sizes have been used to approximate the solutions
using the 2PBM method. Table 10 shows that the
approximate solutions convergence as the mesh size
increased.

The proposed 2PBM method with a constant step-size
was adequate and competitive to ensure better accuracy
compared to the existing methods for solving the Volterra-
type delay integro-differential equations. The results also
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validate the convergence analysis where the numerical
solution of the presented method indeed converges and
approach the exact solution as the step-size decreases.
The accuracy of the numerical results for 2PBM method
are more accurate and achieved smaller absolute error as
the step sizes decreased.
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