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ABSTRACT

It is thoroughly acknowledged that the historical financial time series is not linear, exhibits structural changes, and is 
volatile. It has been noticed in the current literature that because of the existence of structural breaks in the historical time 
series, the GARCH family models provide misleading results and poor forecasts. Thus, it is unavoidable to incorporate 
models with nonlinearity in the conditional mean and conditional variance to capture volatility dynamics more precisely 
than the existing models. Therefore, inspiring in this matter, this study proposes a novel hybrid model of exponential 
autoregressive (ExpAR) with a Markov-switching GARCH (MSGARCH) model. This study also examines volatility 
dynamics and performances through simulation and real-world financial data. Moreover, this study investigates 
downside risk management performances using 5% VaR (Value-at-Risk) back-testing. The empirical findings showed 
that the proposed model outperforms the benchmark model for both simulation and real-world time series data. The VaR 
results also showed that the proposed model captures downside risk more meticulously than the benchmark model.
Keywords: ExpAR model; ExpAR-MSGARCH model; MSGARCH model; structural breaks; value-at-risk

ABSTRAK

Diakui secara benar bahawa siri masa kewangan masa lampau adalah tidak linear, menunjukkan perubahan struktur 
dan meruap. Dapat dilihat dalam kepustakaan semasa oleh kerana adanya putusan berstruktur dalam siri masa lampau, 
model keluarga GARCH memberikan hasil yang tidak benar dan ramalan yang lemah. Oleh itu, tidak dapat dielak untuk 
menggabungkan model yang tidak linear pada min dan varians bersyarat untuk menguasai dinamik kemeruapan dengan 
lebih tepat daripada model sedia ada. Maka, berinspirasi daripada hal ini, kajian ini mencadangkan model hibrid baharu 
eksponen autoregresif (ExpAR) dengan model pertukaran Markov GARCH (MSGARCH). Kajian ini juga mengkaji 
prestasi dan dinamik kemeruapan melalui simulasi dan data kewangan dunia yang betul. Lebih-lebih lagi, penyelidikan 
ini mengkaji prestasi pengurusan risiko penurunan menggunakan ujian semula 5% VaR (risiko pada nilai). Penemuan 
empirik menunjukkan bahawa model yang dicadangkan mengungguli model penanda aras untuk kedua-dua simulasi dan 
data siri masa yang betul. Hasil VaR juga menunjukkan bahawa model yang dicadangkan menangkap risiko penurunan 
lebih teliti daripada model penanda aras.
Kata kunci: Model ExpAR; model ExpAR-MSGARCH; model MSGARCH; putusan berstruktur; risiko pada nilai

INTRODUCTION

The study of time series in finance and economics 
is one of the topmost interests by academicians and 
researchers of various subjects. However, most of the 
research was concentrated primarily on linear modeling. 
The preference of linear models during investigating 

time-varying data is because of many advantages over 
the nonlinear ones such as unsophisticated, easy to 
estimate, capable of explaining many existing real-world 
(historical) time series data and forecasting capability is 
good enough than the alternative methods. The linear 
models containing the above characteristics and widely 
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used are the autoregressive moving average (ARMA) and 
the integrated autoregressive moving average (ARIMA) 
were introduced by Box and Jenkins (1970). Though the 
real-world time series data exhibit not only linearities 
but also nonlinearities, a question has arisen whether 
the existing models are capable of enlightening and 
forecasting the volatility dynamics of such time series 
better than existing linear models.

The Threshold Autoregressive (TAR) model of 
Tong (1978), Self-Exciting Threshold Autoregressive 
(SETAR) model of Tong and Lim (1980), Smooth 
Transition Autoregression (STAR) model of Chan 
and Tong (1986), the Exponential Autoregressive 
(ExpAR) model of Ozaki (1980) and the Bilinear 
model of Granger and Andersen (1978) are typical 
nonlinear models in the conditional mean. In contrast, 
the most popular and representative nonlinear models 
in the conditional variance are the Autoregressive 
Conditional Heteroscedasticity (ARCH) model of Engle 
(1982) and Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) model of Bollerslev (1986). 
Nevertheless, combining linearities or nonlinearities in 
conditional mean and conditional variance has become 
another popular hybrid model class in the preceding two 
decades. 

Baragona et al. (2002) used the Genetic Algorithm 
(GA) to find the gamma parameter of the ExpAR model 
and allowed more than one gamma value in the ExpAR 
model specification, which improved forecasting 
performances. They also argued that the order of the 
model is not necessary to be large, as the low-order 
ExpAR model is enough to get accurate multi-step 
forecasting. It is found that the SARIMA model does 
not adequately capture many seasonal data, however, 
it could be accurately captured through the periodic 
ExpAR model (Merzougui et al. 2016). 

Some researchers also studied the simulation 
performance, geometrical ergodicity, stationarity, 
and forecast accuracy for ExpAR models (Allal & El 
Melhaoui 2006; Meitz & Saikkonen 20081). Moreover, 
this nonlinear model applied successfully in many 
areas of time series such as hydrology (Ghosh et al. 
2014; Merzougui 2017), macroeconomic (Amiri 2012; 
Katsiampa 2014), ecology (Haggan & Ozaki 1981), 
and signal (Ishizuka et al. 2005). Ghosh et al. (2014) 
found evidence of limit cycle behavior and concluded 
that forecasting ability is better than the ARIMA model. 
Merzougui (2017) applied a periodic restricted ExpAR(1) 
model in the monthly water flow of Fraser River and 
concluded that it is better than the linear model. In recent 
work, Xu et al. (2019) used recursive search methods 

to estimate the ExpAR model parameters to improve 
accuracy and convergence rate. 

Apart from that, structural breaks in the volatility 
are found in many financial and economic assets, and 
thus overlooking this characteristic can significantly 
affect the accuracy of the volatility forecasts. Many 
researchers and experts care about only a single-regime 
conditional volatility model, whereas Danielsson (2011) 
refers to these models as one reason for the financial 
crisis. Recent studies have shown that GARCH family 
models might fail to predict actual variants in the 
volatility during volatility dynamics changes regime over 
time (Ardia et al. (2018; Bauwens et al. 2014). A way 
out this issue is to allow the GARCH parameters to vary 
over time, corresponding to a hidden discrete Markov 
process, which is termed as Markov-switching GARCH 
(MSGARCH) model. This approach precedes volatility 
predictions that can promptly adapt to unconditional 
volatility changes (Marcucci 2005). 

Volatility or price fluctuation in the financial market 
is a widespread phenomenon nowadays, especially 
price and stocks index. Volatility in digital currency, 
commodity, energy, exchange rates, and the stock 
markets are the natural consequence of variations in 
the movement of a market. These movements, such as 
market expectation, negative and positive news, new 
information, and trading volume, will cause changes 
in the financial market variance in daily returns. In the 
financial markets, clustering in volatility is known as 
stylized characteristics, which show small and significant 
shifts in the returns will be followed by other small 
and significant shifts (Hossain & Ismail 2021). The 
ARCH and GARCH models become very popular among 
academics, researchers, and practitioners to describe 
the variance in financial time series data. Combining 
the SETAR and Bilinear model with the ARCH model to 
produce a second-generation model SETAR-ARCH and 
Bilinear-ARCH was proposed by Tong (1990). Since 
then, combining the conditional mean model with the 
conditional variance model has become popular among 
researchers and practitioners. This hybrid model is being 
applied more extensively in time series data. 

In recent decades, second-generation models have 
become more popular than first-generation models 
because they can capture volatility dynamics and 
forecasts more accurately. In its continuity, Abdollahi and 
Ebrahimi (2020) combined the Adaptive Neuro-Fuzzy 
Inference System (ANFIS), ARFIMA, and Markov-
Switching (MS) models, which was able to capture many 
features of crude oil price. Lin et al. (2020) observed 
in their study that Markov regime-switching (MRS) 
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GARCH family models perform well compared to the 
regular GARCH family models. Their results showed 
that the Hidden Markov (HM)-EGARCH model performs 
better than the usual GARCH-type models. There is 
evidence that financial and economic time series exhibit 
structural breaks in the volatility, which is observed in 
many studies. As a result, there are significant outcomes 
on modeling volatility dynamics. More significantly, by 
applying various structural transmissions, many findings 
showed that forecasting results improve rather than those 
not considering this issue (Mohammadi & Su 2010). 
By applying the MS long memory model, Sanzo (2018) 
found that out-of-sample results show a more consistent 
prediction counter to those obtained from the chosen 
GARCH models in particular time horizons. Herrera et al. 
(2018) also confirmed that the MSGARCH model exhibits 
a more accurate forecasting counter to GARCH-type 
models when forecasting crude oil volatility. Arellano 
and Rodríguez (2020) found that a high-volatility regime 
was significantly persistent and the leverage effect was not 
observed in Forex markets. Gao et al. (2020) observed in 
their empirical studies that the MRS-LMGARCH model 
did better than the LMGARCH and MRS-GARCH models. 

Financial crisis throughout the world is not a rare 
event; almost all stock markets faced a crash for various 
reasons. The volatility of the world stock market has 
increased radically from 2006, according to IMF’s 
World Uncertainty Index (WUI) (Ali et al. 2019). For 
instance, previous financial crises, the stock market 
crash in 1987, the global financial crisis (GFC) in 2007-
2008, the Eurozone debt crisis in 2010, witness massive 
capital loss and bankruptcy of big financial institutions. 
The common reasons behind these crises were poor 
measurement methods, meager risk management, and 
lack of knowledge of governing risks, specifically 
miscalculating risk measures. Hull (2018) argued that 
most of the previous enormous financial losses could 
be avoided if reliable VaR modeling was appropriately 
implemented. 

Uncertainty in financial markets is a regular 
trend; however, the recent financial world has become 
more volatile because of various reasons such as trade 
war, natural disaster, questionable security in banking 
sectors, and virus spread (like COVID-19). Moreover, in 
many empirical studies, evidence of structural changes 
in the regime and neglecting it produces misleading 
results. Therefore, effective modeling is needed with 
the combination of nonlinear conditional mean and 
nonlinear conditional variance model. In the previous 
study, only Katsiampa (2014) combined the ExpAR 
model with ARCH and GARCH but did not consider 

structural changes. Therefore, to fill the research gap in 
the literature, this study combines the nonlinear ExpAR 
model with MSGARCH. 

This study conduct simulation and real-world 
data application, compare with benchmark model 
ARMA(1,1)-MS(2)GARCH(1,1) and also study the 
performance of  capturing downside r isk.  The 
ExpAR(1) model of Ozaki (1980) was considered in the 
conditional mean equation. This nonlinear model has 
some notable features such as limit cycle, amplitude-
dependent frequency, and jump phenomena. The aim of 
this study is threefold. First, to simulate approximately 
similar data for the proposed and benchmark models, 
then estimate results from the simulation data and 
compare the two models. Second, considering structural 
breaks to investigate the proposed model’s performance 
to the real-world data. Thus, the questions arise, (i) can 
the real-world data fit using the proposed model? (ii) can 
it capture and explain volatility perfectly? Third, using 
VaR back-testing to capture downside risk and verify 
the volatility forecast accuracy for both in-sample and 
out-of-sample. 

The following parts of this paper are organized as 
methods section, the data collection and transformation 
process, discussion on the proposed model and benchmark 
model, analysis of simulation results and real-world data 
application, and a concise summary of all sections.

METHODS

This section contains insight into the methods, which 
provides an overview of mathematical formulation. 
Various econometric models and their mathematical 
formulations are covered in this section. Only the models 
utilized throughout this study are discussed here.

ARMA MODEL

An ARMA model is a combination of the autoregressive 
(AR) model and the moving average (MA) model. Let  yt 
observations at time t, yt-i,  lagged terms at time  t-i and 
εt-j error terms at time t-j, then the ARMA(p, q) model 
can be written as

where  φi and θj are AR and MA terms, respectively. ω 
is constant and the error terms or white noise εt~N(0, 
σ2) and independently identically distributed (iid). The 
ARMA(1,1) model can be written as

(1)

𝑦𝑦𝑡𝑡 = 𝜔𝜔 +∑𝜑𝜑𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝
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+ 𝜀𝜀𝑡𝑡 

where 𝜑𝜑𝑖𝑖 and 𝜃𝜃𝑗𝑗  are AR and MA terms, respectively. 𝜔𝜔 is constant and the error terms or white 

noise 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2) and independently identically distributed (iid). The ARMA(1,1) model can 

be written as 

𝑦𝑦𝑡𝑡 = 𝜔𝜔 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (1) 

 

ExpAR MODEL 

Ozaki and Oda (1977) were the first to describe the Exponential Autoregressive (ExpAR) 

model and then more explicitly explained by Ozaki (1980) and Haggan and Ozaki (1981) to 

illustrate nonlinear stochastic phenomena. An ExpAR(p) model can be written as  
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where 𝜀𝜀𝑡𝑡~𝑛𝑛. 𝑖𝑖. 𝑑𝑑. (0,1), 𝑐𝑐 is constant, 𝜙𝜙𝑖𝑖’s, 𝜋𝜋𝑖𝑖’s, 𝑖𝑖 = 1, 2, 3,⋯ , 𝑝𝑝 and 𝛾𝛾 are parameters that need 

to be determined. Here 𝛾𝛾 is known as scaling factor. The value of 𝛾𝛾 can be chosen such that 

𝑒𝑒−𝛾𝛾𝑦𝑦𝑡𝑡−12  differs from both zero (0) and one (1) for most of the values of 𝑦𝑦𝑡𝑡−1. 
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ExpAR MODEL

Ozaki and Oda (1977) were the first to describe the 
Exponential Autoregressive (ExpAR) model and then 
more explicitly explained by Ozaki (1980) and Haggan 
and Ozaki (1981) to illustrate nonlinear stochastic 
phenomena. An ExpAR(p) model can be written as 

where εt~n. i. d. (0,1), c is constant, ϕi’s, πi’s, i = 1,2,3,⋯, 
p and 
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to be determined. Here 𝛾𝛾 is known as scaling factor. The value of 𝛾𝛾 can be chosen such that 
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to be determined. Here 𝛾𝛾 is known as scaling factor. The value of 𝛾𝛾 can be chosen such that 
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differs from both zero (0) and one (1) 
for most of the values of yt-1.
The first order ExpAR(1) model is as

(2)

MSGARCH MODEL

A comprehensive with detailed description and working 
procedure of a flexible Markov switching (MS) model 
presented by Hamilton (1994). Let yt log-return of sample 
data (in percentage) at time t with 𝔼𝔼[𝑦𝑦𝑡𝑡] = 0 and {𝑦𝑦𝑡𝑡}  and {yt} is 
serially uncorrelated. According to Ardia et al. (2018), 
the MSGARCH model can be stated as:

Here F(∙) is a continuous distribution with zero (0) mean 
and hk,t is conditional variance, which is time-dependent 
in k regimes. While θk are vectors that conserve shape 
parameters and st is state variables, which are changed 
according to 1st order homogeneous Markov chain. The 
state variables st changes are pertaining to a first-order 
homogeneous Markov chain. The transition probability 
matrix P = {pij}, i, j = 1, ..., K with pij = P[st = j| st-1 = 
i] and at time t-1, It-1 denote information set. Hence, the 
transition probability matrix is written as:

where ith row and jth column govern switching probability 
from state i to j. For instance, p12 implies that the 
probability switches from state 1 to 2 at time t and t + 1. 
The probability of keeping in the same state is governed 
as p11 for state 1, similarly to p22 for state 2. This is known 
as the MS model central-point structure, where switching 
in the same state is also a stochastic process. Generally, 

transition probabilities are invariable but allow time-
varying is also possible. However, these conditional 
probabilities are obeying the constraints 0 < pij< 1, i, 
j = 1, ..., 𝐾𝐾 and ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝐾𝐾
𝑗𝑗=1 = 1 ∀𝑖𝑖 ∈   pij = 1 ∀i∈{1, ..., K}. Referring to 

Haas et al. (2004), conditional variance hk,t = h(yt-1, hk, 

t-1, θk) of the GARCH process of regimes st= k, stated as 
the function of past lagged returns and the vectors θk is 
regime dependent. Therefore, GARCH (1,1) process can 
be composed as:

(3)

where α1,k and βk are parameters at finite regime k and 
α1,k  + βk < 1. To make sure positivity, we required that 
α0,k > 0, α1,k  > 0, and βk  ≥ 0.

HYBRID MODEL

For the Markov chain illustration of our nonlinear 
autoregressive model with MSGARCH errors, the 
proposed assumptions are sufficient to prove geometric 
ergodicity and the presence of specific moments. 
Majority of the assumptions needed apply to the 
conditional mean and conditional variance separately, 
making verifying whether the assumptions hold. The 
following assumptions are imposed:
Assumption 1 The zt is iid(0,1) with a (Lebesgue) density 
that is positive and continuous on ℝ 

𝑘𝑘 > 0, 𝐸𝐸[|𝑧𝑧𝑡𝑡|2𝑘𝑘] < ∞ 

. Moreover, for some 
ℝ 

𝑘𝑘 > 0, 𝐸𝐸[|𝑧𝑧𝑡𝑡|2𝑘𝑘] < ∞ .
Assumption 2 The matrix norm ‖∙‖* that is given by a vector 
norm, which is also represented by ‖∙‖*, such that ‖A‖* ≤ 
ρ for all A∈𝒜𝒜 *, where 𝒜𝒜 * = {A(x): x ∈ℝ 

𝑘𝑘 > 0, 𝐸𝐸[|𝑧𝑧𝑡𝑡|2𝑘𝑘] < ∞ 

p} and 0 < ρ <1 
(Meitz & Saikkonen 2008).
Assumption 3 α i > 0, β i > 0, the Markov chain is 
homogeneous, and pij ∈ (0,1) for all i, j = {1,2, …, k}.
Assumption 4 Let ρ(·)  be the spectral radius of a matrix, 
i.e. its largest eigenvalue in modulus. Then ρ (Ω) < 1 
(Haas et al. (2004).
The ARMA-MSGARCH model is already existed in the 
literature. Only the mathematical formulation is discussed 
here. An ARMA(1)-MSGARCH(1,1) model is defined as

(4)

where    

                                                           𝑦𝑦𝑡𝑡 = 𝜔𝜔 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                                              (4) 

where 𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡√ℎ𝑘𝑘,𝑡𝑡, 𝑧𝑧𝑡𝑡~𝑁𝑁(0, 1) iid, and 𝜀𝜀𝑡𝑡~𝑁𝑁(0, √ℎ𝑘𝑘,𝑡𝑡). 

Then MSGARCH(1,1) model becomes  

                                          ℎ𝑘𝑘,𝑡𝑡 = 𝛼𝛼0,𝑘𝑘 + 𝛼𝛼1,𝑘𝑘𝜀𝜀𝑡𝑡−1
2 + 𝛽𝛽𝑘𝑘ℎ𝑘𝑘,𝑡𝑡−1                                                            (5) 

 

Then MSGARCH(1,1) model becomes 

(5)

where α1,k and βk are parameters at finite regime k and 
α1,k + βk < 1.

𝑦𝑦𝑡𝑡 = 𝜔𝜔 +∑𝜑𝜑𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝

𝑖𝑖=1
+∑𝜃𝜃𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1
+ 𝜀𝜀𝑡𝑡 

where 𝜑𝜑𝑖𝑖 and 𝜃𝜃𝑗𝑗  are AR and MA terms, respectively. 𝜔𝜔 is constant and the error terms or white 

noise 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2) and independently identically distributed (iid). The ARMA(1,1) model can 

be written as 

𝑦𝑦𝑡𝑡 = 𝜔𝜔 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (1) 

 

ExpAR MODEL 

Ozaki and Oda (1977) were the first to describe the Exponential Autoregressive (ExpAR) 

model and then more explicitly explained by Ozaki (1980) and Haggan and Ozaki (1981) to 

illustrate nonlinear stochastic phenomena. An ExpAR(p) model can be written as  

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + {𝜙𝜙1 + 𝜋𝜋1𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾𝑦𝑦𝑡𝑡−12 )}𝑦𝑦𝑡𝑡−1 + ⋯⋯+ {𝜙𝜙𝑝𝑝 + 𝜋𝜋𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾𝑦𝑦𝑡𝑡−12 )}𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 

 

where 𝜀𝜀𝑡𝑡~𝑛𝑛. 𝑖𝑖. 𝑑𝑑. (0,1), 𝑐𝑐 is constant, 𝜙𝜙𝑖𝑖’s, 𝜋𝜋𝑖𝑖’s, 𝑖𝑖 = 1, 2, 3,⋯ , 𝑝𝑝 and 𝛾𝛾 are parameters that need 

to be determined. Here 𝛾𝛾 is known as scaling factor. The value of 𝛾𝛾 can be chosen such that 

𝑒𝑒−𝛾𝛾𝑦𝑦𝑡𝑡−12  differs from both zero (0) and one (1) for most of the values of 𝑦𝑦𝑡𝑡−1. 

The first order ExpAR(1) model is as 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙1 + 𝜋𝜋1𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾𝑦𝑦𝑡𝑡−12 )𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (2) 
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where 𝜑𝜑𝑖𝑖 and 𝜃𝜃𝑗𝑗  are AR and MA terms, respectively. 𝜔𝜔 is constant and the error terms or white 

noise 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2) and independently identically distributed (iid). The ARMA(1,1) model can 
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𝑒𝑒−𝛾𝛾𝑦𝑦𝑡𝑡−12  differs from both zero (0) and one (1) for most of the values of 𝑦𝑦𝑡𝑡−1. 
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𝑦𝑦𝑡𝑡 = 𝜔𝜔 +∑𝜑𝜑𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖
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where 𝜑𝜑𝑖𝑖 and 𝜃𝜃𝑗𝑗  are AR and MA terms, respectively. 𝜔𝜔 is constant and the error terms or white 

noise 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2) and independently identically distributed (iid). The ARMA(1,1) model can 

be written as 

𝑦𝑦𝑡𝑡 = 𝜔𝜔 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (1) 

 

ExpAR MODEL 

Ozaki and Oda (1977) were the first to describe the Exponential Autoregressive (ExpAR) 

model and then more explicitly explained by Ozaki (1980) and Haggan and Ozaki (1981) to 

illustrate nonlinear stochastic phenomena. An ExpAR(p) model can be written as  
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where 𝜀𝜀𝑡𝑡~𝑛𝑛. 𝑖𝑖. 𝑑𝑑. (0,1), 𝑐𝑐 is constant, 𝜙𝜙𝑖𝑖’s, 𝜋𝜋𝑖𝑖’s, 𝑖𝑖 = 1, 2, 3,⋯ , 𝑝𝑝 and 𝛾𝛾 are parameters that need 

to be determined. Here 𝛾𝛾 is known as scaling factor. The value of 𝛾𝛾 can be chosen such that 

𝑒𝑒−𝛾𝛾𝑦𝑦𝑡𝑡−12  differs from both zero (0) and one (1) for most of the values of 𝑦𝑦𝑡𝑡−1. 

The first order ExpAR(1) model is as 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙1 + 𝜋𝜋1𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾𝑦𝑦𝑡𝑡−12 )𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (2) 

 

 

ℎ𝑘𝑘,𝑡𝑡 = 𝛼𝛼0,𝑘𝑘 + 𝛼𝛼1,𝑘𝑘𝑦𝑦𝑡𝑡−12 + 𝛽𝛽𝑘𝑘ℎ𝑘𝑘,𝑡𝑡−1 (3) 

 
𝑦𝑦𝑡𝑡 𝑠𝑠𝑡𝑡 𝑘𝑘 𝐼𝐼𝑡𝑡− 𝐹𝐹 ℎ𝑘𝑘 𝑡𝑡 𝜃𝜃𝑘𝑘  

𝑃𝑃 = [
𝑝𝑝11 ⋯ 𝑝𝑝1𝐾𝐾
⋮ ⋱ ⋮

𝑝𝑝𝐾𝐾1 ⋯ 𝑝𝑝𝐾𝐾𝐾𝐾
]                                                            𝑦𝑦𝑡𝑡 = 𝜔𝜔 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                                              (4) 

where 𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡√ℎ𝑘𝑘,𝑡𝑡, 𝑧𝑧𝑡𝑡~𝑁𝑁(0, 1) iid, and 𝜀𝜀𝑡𝑡~𝑁𝑁(0, √ℎ𝑘𝑘,𝑡𝑡). 

Then MSGARCH(1,1) model becomes  

                                          ℎ𝑘𝑘,𝑡𝑡 = 𝛼𝛼0,𝑘𝑘 + 𝛼𝛼1,𝑘𝑘𝜀𝜀𝑡𝑡−1
2 + 𝛽𝛽𝑘𝑘ℎ𝑘𝑘,𝑡𝑡−1                                                            (5) 

 

                                                           𝑦𝑦𝑡𝑡 = 𝜔𝜔 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                                              (4) 

where 𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡√ℎ𝑘𝑘,𝑡𝑡, 𝑧𝑧𝑡𝑡~𝑁𝑁(0, 1) iid, and 𝜀𝜀𝑡𝑡~𝑁𝑁(0, √ℎ𝑘𝑘,𝑡𝑡). 

Then MSGARCH(1,1) model becomes  

                                          ℎ𝑘𝑘,𝑡𝑡 = 𝛼𝛼0,𝑘𝑘 + 𝛼𝛼1,𝑘𝑘𝜀𝜀𝑡𝑡−1
2 + 𝛽𝛽𝑘𝑘ℎ𝑘𝑘,𝑡𝑡−1                                                            (5) 
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where α1,k and βk are parameters at finite regime k and 
α1,k + βk < 1.

RESULTS AND DISCUSSION

SIMULATION

Since an alternative model was proposed, it is crucial to 
simulate the model for various parameter’s values to see 
significant differences with the benchmark model, which 
this model could illustrate. Regarding comparability 
purposes among the two models, the standard parameter 
value was taken as the same value across the model 
(Haggan & Ozaki 1981; Katsiampa 2014; Ozaki 1980). 
The parameter’s value was chosen arbitrarily so that it 
can be close to actual values and consider the distribution 
is iid with mean 0 and variance 1. Different possible 
combinations were considered during the selection of 
arbitrary parameter values. Only the first-order model 
was considered for the simulation process to avoid the 
complexity, and it can explain real-world data’s nonlinear 
behaviour (Hansen & Lunde 2005). 

The simulation process was executed using 
R programming software, where different packages 
(such as strucchange, tseries, psych, FinTS, arima, 

lmtest, MSGARCH, GAS) were used. Here 1000, 2000, 
and 2800 observations were generated for ExpAR(1)-
MSGARCH(1,1) and ARMA(1,1)-MSGARCH(1,1) 
model with burn-in phase is 500 and replicated 500 times 
for the case of ExpAR model. During the simulation 
process and estimation of results, the scale parameter 
gamma (γ) of the ExpAR(1) model was the same for 
both cases. The primary aim was to generate similar 
time series data. Then, the two models were compared 
from estimated results using simulated time series data 
by considering how close the initial values are to the 
estimated values, the deviation of standard errors, and 
the model selection indicators based on log-likelihood 
(LL) and information criteria. 

The two models’ simulated time series data are 
displayed in Figures 1, 2, and 3 and their autocorrelation 
plots in Supplementary Figures 1, 3, and 5. Table 
1 reported the initial value of parameters taken 
during simulations. In order to compare two model 
performances; it is vital to produce similar data series. 
From the simulated series plot, it was observed that 
approximately similar data is generated in the three 
simulations, which is one of our objectives. It has been 
observed from descriptive statistics in Table 2; almost all 
indicators are the same with only a slight difference in 
standard deviation value which is expected. The mean of 
the simulated series are slightly deviates from zero when 
the number of observations increased. The Jarque-Bera 
statistics of p-value suggest that the two simulated series 
are normally distributed. The skewness value is close to 
zero, and the excess kurtosis value approached zero when 
the number of observations increased. The skewness and 
excess kurtosis value are closed to zero means that the 
distribution is approximately symmetric and light-tailed.
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TABLE 1. Initial value of parameters for each simulation

Simulation
ExpAR ARMA

MSGARCH Observations
ϕ1 π1 γ φ1 θ1

1 0.05 0.63 9.1 -0.23 0.29 (0.02, 0.007, 0.97, 0.02, 0.007, 
0.97, 0.92, 0.12) 1000

2 0.04 0.25 14.5 0.44 -0.4 (0.02, 0.0001, 0.98, 0.02, 
0.0001, 0.98, 0.92, 0.13) 2000

3 0.024 -0.14 14.49 0.5 -0.5 (0.28, 0.0004, 0.7, 0.28, 0.0004, 
0.7, 0.92, 0.13) 2800
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TABLE 2. Descriptive statistics of simulated series

Model Mean SD Minimum Maximum Skewness Excess Kurtosis JB Observations

ExpAR-MSGARCH 0 0.97 -2.76 2.92 0.03 -0.11 0.75
1000

ARMA-MSGARCH 0 0.99 -2.84 3.01 0.03 -0.11 0.75

ExpAR-MSGARCH -0.01 0.99 -2.83 2.99 0.04 -0.08 0.58
2000

ARMA-MSGARCH -0.01 1 -2.86 3.03 0.04 -0.08 0.58

ExpAR-MSGARCH -0.01 0.95 -2.78 3.21 0.01 -0.04 0.88
2800

ARMA-MSGARCH -0.01 0.98 -2.87 3.31 0.01 -0.04 0.87

FIGURE 1. Simulated series plot of ExpAR-MSGARCH vs ARMA-
MSGARCH model

FIGURE 2. Simulated series plot of ExpAR-MSGARCH vs ARMA-
MSGARCH model
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From Table 3, it has been seen that the initial value 
of parameters is very close to the estimated values, which 
is one of our objectives. The arch and garch parameter 
values hold positivity constraints, and the sum of these 

parameters values is less than one for both models. The 
standard errors of the ExpAR-MSGARCH model are lower 
than of the ARMA-MSGACRH model. Only a slight 
change in the estimated results of the second simulation.  

FIGURE 3. Simulated series plot of ExpAR-MSGARCH vs ARMA-
MSGARCH model

TABLE 3. Estimated results from simulated series of ExpAR(1)-MS(2)GARCH(1,1) and ARMA(1,1)-MS(2)GARCH(1,1)

Parameters
1000 observations 2000 observations 2800 observations

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

ϕ1/φ1
0.0469

(0.0322)
-0.2336
(0.3734)

0.0411
(0.0226)

0.4359
(0.5445)

0.0243
(0.0191)

0.5174
(0.4345)

π1/θ1
0.6299

(0.4718)
0.2896
(0.367)

0.2483
(0.4746)

-0.3963
(0.556)

-0.1398
(0.3773)

-0.4942
(0.4412)

α0,1
0.0214

(0.2194)
0.0262
(1.121)

0.0216
(0.358)

0.0221
(0.3448)

0.2908
(4.1567)

0.2496
(5.2641)

α1,1
0.0067

(0.0963)
0.007

(0.4388)
0.0002

(0.0082)
0.0001

(0.0057)
0.0005

(0.0232)
0.0002

(0.0082)

β1
0.9704

(0.2383)
0.9665

(1.0739)
0.9778

(0.3649)
0.9778

(0.3446)
0.6787
(4.604)

0.7389
(5.502)

α0,2
0.0214

(0.2527)
0.0262

(2.3942)
0.0216

(0.4124)
0.0221
(0.429)

0.2908
(3.3969)

0.2496
(4.1494)

α1,2
0.0067

(0.1099)
0.007

(0.9372)
0.0002

(0.0108)
0.0001

(0.0078)
0.0005

(0.0156)
0.0002

(0.0058)

β2
0.9704

(0.2751)
0.9665

(2.2921)
0.9778

(0.4196)
0.9778

(0.4289)
0.6787

(3.7698)
0.7389

(4.3356)
p1,1 0.9259 0.9912 0.9224 0.9227 0.9222 0.9226
p2,2 0.8795 0.981 0.8665 0.8657 0.865 0.8645
LL -1379.0478 -1409.7439 -2814.1774 -2836.9539 -3832.6253 -3909.7799

AIC 2774.0956 2835.4877 5644.3547 5689.9077 7681.2506 7835.5598
BIC 2813.3497 2874.7498 5689.158 5734.715 7728.7468 7883.0588

Stable probabilities
State 1 0.6191 0.6829 0.6323 0.6346 0.6346 0.6365
State 2 0.3809 0.3171 0.3677 0.3654 0.3654 0.3635

The standard error is shown in the parentheses
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The two model’s stable probabilities of the two states 
are relatively similar. The proposed model’s log-
likelihood value is greater than the benchmark model, 
and the information criteria AIC (Akaike’s Information 
Criteria) and BIC (Bayesian Information Criteria) of the 
proposed model are lower than the benchmark model in 
each simulation. The volatility plots (in Supplementary 
Figures 2, 4, and 6) of the two models are annualized 
considering 250 trading days and show the same pattern. 
The volatility of the ARMA-MSGACRH model is higher 
than the volatility of the ExpAR-MSGACRH model. 
From the above analysis, it can be concluded that our 
proposed model performs well than the benchmark 
model.

HISTORICAL DATA’S SUMMARY STATISTICS

The daily adjusted closing price was collected from 
http://finance.yahoo.com and DSEX from http://dsebd.
org. Missing data and dates were omitted during the 
filtering process to avert any confusing results (Moritz 
& Bartz-Beielstein 2017). Therefore, the number of 
observations becomes different for a different sample. 
The sample name, period, and observation size is reported 
in Supplementary Table 1. The ending date is the same for 
all samples, but the starting date is different because of 
the availability of the data. For example, DSEX began on 
January 27, 2013, because Bangladesh Stock Exchange 
started counting the DSEX index from this date, while 
Bitcoin (BTC) price was over $100 on April 01, 2013; 
therefore, this date is considered as the starting date. All 
prices are taken as in US dollars. 

The sample data was transferred into the percentage 
of the first difference of natural logarithmic return on 
daily adjusted closing prices. Let  be denoted as daily log-
return and  be daily adjusted closing price at time . Then, 
continuously compounded return series is defined as

     rt = 100*(ln(Pt/P(t-1)

To demonstrate the proposed model’s practical 
capability by considering financial time series data to 
inspect whether this model can explain real-world data. 
Six samples were chosen to represent all financial sectors 
in order to compare the two models. The descriptive 
statistics are presented in Table 4. The mean of DSEX 
is zero, and crude oil WTI is negative, while Bitcoin 
possesses the highest mean. USDEUR possesses the lowest 
volatility than other indices, whereas Bitcoin possesses 
the highest volatility which is about sixty-four times more 
volatile. DSEX and USDEUR are positively skewed, 
signify right tail disturbance and others are negatively 
skewed, signify left tail disturbance. All sample’s kurtosis 
value is positive and greater than zero implies that heavy-
tailed distribution. To deal with heavy-tailed distribution, 
one should consider student’s-t distribution (Rahim et 
al. 2018; Zahid & Iqbal 2020). However, only normal 
distribution was considered this time around, student’s-t 
and other distributions will be considered for future 
work. The p-value of the ADF test confirms the returns 
are stationary and the p-value of the Jarque-Bera (JB) test 
suggests the returns are not normally distributed.

TABLE 4. Descriptive statistics of six financial data

Index Mean SD Variance Skewness Kurtosis ADF JB

NASDAQ 0.06 1.24 1.54 -0.78 10.81 <0.01 <2.2e-16

DSEX 0.00 0.9 0.81 0.45 13.26 <0.01 <2.2e-16

Bitcoin 0.18 4.46 19.89 -0.56 12.34 <0.01 <2.2e-16

Gold 0.02 1.03 1.06 -0.66 6.72 <0.01 <2.2e-16

C. Oil WTI -0.02 2.82 7.95 -1.91 64.88 <0.01 <2.2e-16

USD-EUR 0.01 0.56 0.31 0.09 2.2 <0.01 <2.2e-16

It is vital to test whether ARCH effects exist on 
the residuals before executing the MSGARCH model 
(Abdulsalam & Bouresli 2019; Theiri & Ati 2020). If there 
are no ARCH effects, then any linear model is enough to 
explain time series characteristics. Chi-squared statistics, 

degrees of freedom (df), and p-value are presented in 
Table 5 for six samples. Since the null hypothesis of no 
ARCH effects is rejected, it shows the presence of ARCH 
effects. Therefore, there is no restriction on executing the 
MSGARCH model.
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TABLE 5. ARCH test results on residuals for six samples

NASDAQ DSEX Bitcoin
ExpAR ARMA ExpAR ARMA ExpAR ARMA

Chi-squared 685.31 773.95 467.95 443.74 240.59 264.6
df 12 12 12 12 12 12

p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
USD-EUR Gold C. Oil WTI

ExpAR ARMA ExpAR ARMA ExpAR ARMA
Chi-squared 137.5 137.85 114.55 114.34 527.69 483.6

df 12 12 12 12 12 12
p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

APPLICATION IN REAL-WORLD TIME SERIES DATA

The estimated results of six samples from two models 
ExpAR(1)-MS(2)GARCH(1,1)  and ARMA(1,1)-
MS(2)GARCH(1,1) are presented in Table 6, where 
coefficients, the standard error in parentheses and t 
value in the bracket. Two models estimated parameters 
values (both states) are very close to each other, even 
the constant coefficients. A similar result was also found 
in Katsiampa (2014), who studied ExpAR-ARCH, AR-
ARCH, ExpAR-GARCH and AR-GARCH models, where 
common coefficients are close to each other. In our 
studies, according to the highest log-likelihood and the 
lowest information criteria, ExpAR(1)-MS(2)GARCH(1,1) 
model outperform ARMA(1,1)-MS(2)GARCH(1,1) model 
except for Bitcoin, where ARMA(1,1)-MS(2)GARCH(1,1) 
model is better than the proposed model. In USDEUR, 
the proposed model’s LL, AIC, and BIC values are 
-2148.7453, 4313.4906, 4361.055, and the benchmark 
model -2149.6417, 4315.2834, 4362.8507, respectively. 
These values are very close; therefore, these two models 
can explain volatility dynamics very well. Most of the 
standard error value of the proposed model is lower 
than the benchmark model. Both regimes of DSEX and 
USDEUR are highly persistent, meanwhile for Bitcoin, 
Gold, and crude oil WTI, only the first regime is highly 
persistent. For NASDAQ, both regimes are moderately 
persistent. This regimes-persistence is shown in Figure 4, 
where the smoothed probabilities, ℙ [st  = k | IT ] for low 
and high volatility regimes (k = 1 and k = 2, respectively) 
are displayed. The high volatility regime covered by the 
red line and the low volatility regime shown uncovered 
area. The annualized volatility of each sample was 
extracted from two models (display in Supplementary 
Figure 7). The volatility plot shows that the two models 
capture volatility very well, and volatility movement 

is similar. It has been seen from the volatility plot that 
the volatility moving between 10 and 30 for NASDAQ, 
10 to 20 for DSEX, 50 to 180 for Bitcoin, 4 to 15 for 
USDEUR, 10 to 27 for Gold, and 20 to 78 for WTI. This 
result is consistent with the sample’s returns volatility. 
The stable probabilities (unconditional distribution) are 
higher for state 1 than state 2. In precise, the 1st regime 
is illustrated as low volatility and low persistence in 
the volatility dynamics. Alternatively, the 2nd regime is 
illustrated as high volatility and high persistence in the 
volatility dynamics. Visibly, the investors will identify 
regime one as a tranquil market with low volatility and 
low persistence, whereas regime two is a chaotic market 
with high volatility and high persistence. 

Downside risk VaR (Value-at-Risk) at 5% risk level 
for both in-sample and out-of-sample are also reported in 
Table 6, where three tests results, namely unconditional 
coverage (UC) of Kupiec (1995), conditional coverage 
(CC) of (Christoffersen 1998), and dynamic quantile 
(DQ) of Engle and Manganelli (2004) are presented. 
The in-sample VaR was estimated over the full sample 
period, and the out-of-sample VaR was estimated over 
the 200 draws of point forecast value. The highlighted 
bold means correct coverage under the null hypothesis 
at 5% VaR level. The p-value of 5% VaR level for both 
in-sample and out-of-sample of the proposed model is 
comparatively higher than the benchmark model. Also, it 
can be added that the VaR back-testing results suggesting 
the two models fit well for six samples and explain and 
capture volatility very well. In-sample VaR plot at 5% 
level for six samples are displayed in Figure 5, where a 
red dashed line shows the ExpAR-MSGARCH model, and 
the solid blue line shows the ARMA-MSGARCH model. 
From Figure 5, it is evidence that the downside risk 
capture by the two models perfectly. If the two model’s 
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performance are compared based on 5% VaR, then, it is 
clear from the figure that the proposed model can capture 
the downside risk more accurately than the benchmark 
model. From the above discussion and results analyses, 
the proposed model outperforms the benchmark model 
for the six samples. 

Now, based on simulation performance and 
practical application, the following summary may be 
formed. Approximately similar data was successfully 

generated from the two models ExpAR(1)-MS(2)
GARCH(1,1) and ARMA(1,1)-MS(2)GARCH(1,1), where 
the value of the common parameters were the same. 
After that, the simulated data were fitted using the two 
models. Then, it was observed from the estimated results 
that the common parameters value was very close to 
each other, the standard error of the proposed model 
was smaller than the benchmark model, the LL of the 
proposed model was greater than the benchmark model, 

FIGURE 4. Smoothed probabilities of six samples plotted from ExpAR-MSGARCH and 
ARMA-MSGARCH models. High volatility regime covered by the red line. The name 

of the sample is shown in the top left corner of each plot
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AIC, and BIC of the proposed model were lower than the 
benchmark model. Based on the simulation results, the 
proposed model was better than the benchmark model. 

To find the answer to the second aim questions, 
real-world data were fitted using the proposed model 
and benchmark model. For this purpose, six different 
sample’s daily adjusted closing prices were considered. 
There was evidence of structural breaks in all sample 
series (reported in Supplementary Table 2). After fitting 
the real-world data into our models, it was observed that 
the proposed model captures volatility dynamics and 

explains it very well. The proposed model outperforms 
all financial sectors over the benchmark model except 
Bitcoin. From the analysis, it is clear that one model 
cannot perfectly describe the volatility dynamics of all 
financial sectors. 

To verify the volatility forecasting accuracy of the 
two models, VaR back-testing at 5% level was used. The 
estimated results showed that the two models correctly 
capture the downside risk. In this case, the proposed 
model capture downside risk very well compared to the 
benchmark model.

FIGURE 5. In-sample 5% VaR back-testing plot of six samples. The name of the sample 
is shown in the top left corner of each plot
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TABLE 6. Estimated results of six samples from ExpAR(1)-MS(2)GARCH(1,1) and ARMA(1,1)-MS(2)GARCH(1,1) model

Variable

NASDAQ DSEX Bitcoin USDEUR Gold C. Oil WTI

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

ExpAR-
MSGARCH

ARMA-
MSGARCH

γ 0.015 - 0.01 - 0.001 - 0.04 - 8.0 - 0.02 -

ϕ1/φ1 -0.8089
(0.0654)
[-12.364]

-0.4663
(0.0797)
[-5.8491]

-0.5687
(0.1325)
[-4.292]

-0.1413
(0.1779)
[-0.7942]

-0.2547 
(0.0684)
[-3.724]

-0.8425
(0.2072)
[-4.0655]

-0.1562
(0.2694)
[-0.58]

-0.4605
(0.288)

[-1.5986]

-0.0272
(0.0193)
[-1.407]

0.08
(0.3964)
[0.2018]

-0.0329 
(0.0274)
[-1.203]

0.4772 
(0.1134)
[4.2071]

π1/θ1 0.8449
(0.0777)
[10.87]

0.3405 
(0.0837)
[4.0672]

0.7746 
(0.145)
[5.341]

0.273 
(0.1729)
[1.5785]

0.3339
(0.0827)
[4.039]

0.8362 
(0.2052)
[4.0754]

0.1312
(0.2863)
[0.458]

0.4281
(0.2936)
[1.4582]

-0.2114
(0.2408)
[-0.878]

-0.1109
(0.395)

[-0.2808]

0.0165 
(0.0505)
[0.327]

-0.5292 
(0.1087)
[-4.8671]

α0,1 0.0032
(0.0061)
[0.5259]

0.0062
(0.0035)
[1.7525]

0.013
(0.0041)
[3.1847]

0.0129
(0.004)
[3.1902]

0.0253 
(0.0121)
[2.0971]

0.0243 
(0.012)
[2.0145]

0.0001
(0.0002)
[0.287]

0.0001
(0.0002)
[0.3356]

0.0035
(0.0018)
[1.9822]

0.0036
(0.0018)
[2.0247]

0.0715
(0.017)
[4.2077]

0.0708 
(0.0167)
[4.2486]

α1,1 0.0682
(0.0308)
[2.2159]

0.0791 
(0.026)
[3.0407]

0.1591
(0.0833)
[1.9099]

0.1665
(0.0961)
[1.7234]

0.0464
(0.012)
[3.8639]

0.0433
(0.0118)
[3.6808]

0.0107
(0.0067)
[1.6097]

0.0108
(0.0066)
[1.642]

0.0265
(0.0093)
[2.8625]

0.0265
(0.0093)
[2.8557]

0.0748 
(0.0176)
[4.2609]

0.074
(0.0172)
[4.2973]

β1 0.8446
(0.0315)
[26.7764]

0.8488 
(0.0192)
[44.1513]

0.8249
(0.0097)
[85.4411]

0.8208
(0.0093)
[88.1608]

0.8801
(0.0097)
[90.4132]

0.8832
(0.01)

[88.2292]

0.9861
(0.0012)

[789.8821]

0.986
(0.0012)

[812.5294]

0.9469
(0.0055)

[171.5031]

0.9465
(0.0056)

[168.9141]

0.8932 
(0.0062)

[143.9148]

0.8939 
(0.0061)

[145.6266]

α0,2 0.1359
(0.0509)
[2.6718]

0.2137 
(0.0811)
[2.6362]

0.9519
(0.2969)
[3.2061]

0.9798
(0.3006)
[3.2598]

4.7341
(1.4709)
[3.2185]

4.7239
(1.3949)
[3.3865]

0.3477
(0.3337)
[1.0418]

0.3131
(0.3474)
[0.9012]

2.5413
(0.3202)
[7.9364]

2.5314
(0.3067)
[8.2531]

28.8879 
(18.4851)
[1.5628]

25.2268 
(13.9973)
[1.8023]

α1,2 0.1967 
(0.1192)
[1.6498]

0.2327 
(0.1753)
[1.3276]

0.9999
(0.0055)

[181.9528]

0.9998
(0.0065)
[153.009]

0.1642
(0.1275)
[1.287]

0.1685
(0.1306)
[1.2906]

0.0565
(0.0792)
[0.7135]

0.055
(0.09)

[0.6119]

0.552
(0.1937)
[2.8491]

0.547
(0.1904)
[2.8738]

0.9546 
(1.1073)
[0.8621]

0.9396 
(1.2474)
[0.7533]

β2 0.7939
(0.0065)

[121.3536]

0.758 
(0.0084)
[89.9594]

0.0000
(0.0002)
[0.0035]

0.0000
(0.0024)
[0.0206]

0.8305
(0.0043)

[195.3375]

0.8274
(0.0034)

[241.9694]

0.3571
(0.5692)
[0.6274]

0.4152
(0.5971)
[0.6954]

0.0007
(0.0212)
[0.0311]

0.0003
(0.0139)
[0.0205]

0.0452 
(0.0041)
[10.9866]

0.0601
(0.0046)
[13.1552]

p1,1 0.4115 0.5887 0.9994 0.9994 0.8142 0.8097 0.994 0.994 0.7863 0.7831 0.9759 0.9741

p2,2 0.4048 0.3023 0.9967 0.9967 0.4403 0.4458 0.9856 0.9857 0.058 0.0565 0.1869 0.1939

LL -3851.3557 -3858.0254 -1853.5262 -1860.2662 -7188.989 -7181.4312 -2148.7453 -2149.6417 -3700.2463 -3704.8763 -5711.8689 -5715.0868

AIC 7718.7114 7732.0508 3723.0523 3736.5324 14393.978 14378.8624 4313.4906 4315.2834 7416.4926 7425.7525 11439.7379 11446.1736

BIC 7766.0137 7779.356 3766.6901 3780.1748 14441.4168 14426.3041 4361.055 4362.8507 7463.9716 7473.2344 11487.049 11493.4876

Stable probabilities

State 1 0.5028 0.6291 0.8534 0.8494 0.7508 0.7444 0.7047 0.7038 0.8151 0.8131 0.9712 0.9689

State 2 0.4972 0.3709 0.1466 0.1506 0.2492 0.2556 0.2953 0.2962 0.1849 0.1869 0.0288 0.0311

VaR back-testing (In sample)

LRuc 0.055 0.0047 0.7057 0.5443 0.934 1.0000 0.1094 0.0899 0.19 0.2552 0.0162 0.0692

LRcc 0.1581 0.0167 0.9312 0.7549 0.4905 0.5168 0.1424 0.198 0.3546 0.5183 0.0342 0.1202

DQ 0.1249 0.055 0.2316 0.0036 0.2947 0.2075 0.3324 0.4659 0.7719 0.8035 0.0829 0.1471

VaR back-testing (Out-of-sample)

LRuc 0.1622 0.0275 0.0737 0.0737 1.0000 1.0000 0.0002 0.0002 0.7416 0.7416 0.3047 0.3047

LRcc 0.1366 0.0812 0.1776 0.1776 0.8042 0.8042 0.0009 0.0009 0.6682 0.6682 0.4574 0.4574

DQ 0.2423 0.3015 0.7292 0.7295 0.1657 0.1608 0.2811 0.2809 0.7693 0.7603 0.8736 0.8739

CONCLUSION

Overall, our proposed model is well enough to explain 
both simulation and real-world data’s volatility dynamics 
considering structural breaks in the real-world data. 

Furthermore, it can capture the downside risk splendidly. 
Therefore, the proposed model is useful in fitting, 
illustrating, and capturing the downside risk of nonlinear 
behavior in economic and financial time series data. 
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At the same time, three objectives of this study were 
successfully achieved. It is of prime importance to select 
a reliable model for capturing volatility and forecasting 
the risk before an investment. Since the proposed model 
explains real-world data relatively more thoroughly than 
the benchmark model and captures the downside risk 
accurately, it would be beneficial for the investors to 
make a correct decision. This study opens a wide range 
of potential research opportunities, like the Markov 
chain Monte Carlo method instead of the Maximum 
Likelihood estimation method and student’s-t distribution 
to deal with leptokurtic distribution.
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SUPPLEMENTARY FIGURE 1. Simulation 1: Autocorrelation and partial 
autocorrelation of simulated series

SUPPLEMENTARY FIGURE  2. Simulation 1: Annualized volatility plot of 
ExpAR-MSGARCH and ARMA-MSGARCH model
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SUPPLEMENTARY FIGURE  3. Simulation 2: Autocorrelation and partial 
autocorrelation of simulated series

SUPPLEMENTARY FIGURE  4. Simulation 2: Annualized volatility plot of 
ExpAR-MSGARCH and ARMA-MSGARCH model

SUPPLEMENTARY FIGURE  5. Simulation 3: Autocorrelation and partial 
autocorrelation of simulated series
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SUPPLEMENTARY FIGURE 7. Annualized volatility plot of six financial data 
from ExpAR-MSGARCH and ARMA-MSGARCH model. The name of the 

sample is placed middle of the plot

SUPPLEMENTARY FIGURE  6. Simulation 3: Annualized volatility plot of 
ExpAR-MSGARCH and ARMA-MSGARCH model


