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ABSTRACT

Recently, adaptive quality control charts have been frequently utilised in diverse production and manufacturing industries 
to ensure process stability and maintain a desirable level of product quality. Among these charts, the variable sampling 
interval (VSI) exponentially weighted moving average (EWMA) X̅ chart is known for its sensitivity and efficiency in 
monitoring the process mean shifts. However, the existing literature on the design of the VSI EWMA X̅ chart is predicated 
on the presumption that the underlying process adheres to a normal distribution. This normality assumption is often violated 
in manufacturing settings, where many practical processes tend to follow non-normal or skewed distributions. Therefore, 
this paper investigates the performance of one-sided VSI EWMA X̅ charts designed under the normal distribution model, 
when the quality characteristics of interest follow a gamma distribution. Our findings indicate that the in-control average 
time to signal and the standard deviation of the time to signal for the one-sided VSI EWMA X̅ charts are significantly 
deteriorated under the gamma distribution. To tackle this problem, this paper proposes new charting parameters specifically 
derived for the one-sided VSI EWMA X̅ charts under the gamma distribution. Besides, comparative analyses show that 
the proposed one-sided VSI EWMA X̅ charts exhibit the best detection speed compared to the one-sided Shewhart X̅ and 
EWMA X̅ charts, when the process follows a gamma distribution. An illustrative application of the one-sided VSI EWMA 
X̅ chart for monitoring the weight of bias tires in scooter manufacturing is provided at the end of this paper. 
Keywords: Average time to signal; exponentially weighted moving average control chart; gamma distribution; statistical 
process control; variable sampling interval scheme

ABSTRAK

Baru-baru ini, carta kawalan kualiti beradaptif sering digunakan dalam pelbagai industri pengeluaran dan pembuatan untuk 
memastikan kestabilan proses dan mengekalkan tahap kualiti produk yang diinginkan. Antara carta ini, carta kawalan 
purata bergerak berpemberat eksponen selang pensampelan berubah-ubah (VSI EWMA) X̅ dikenali kerana kepekaan dan 
kecekapannya dalam memantau perubahan min proses. Walau bagaimanapun, kepustakaan sedia ada yang mengenai reka 
bentuk carta VSI EWMA X̅ adalah berdasarkan andaian bahawa proses asas mematuhi taburan normal. Andaian kenormalan 
ini sering tidak dipenuhi dalam persekitaran perbuatan dengan kebanyakan proses praktikal cendurung mengikuti taburan 
yang tidak normal atau taburan yang condong. Oleh itu, kertas ini mengkaji prestasi carta VSI EWMA X̅ satu hala yang direka 
di bawah model taburan normal, apabila ciri kualiti yang diminati mengikuti taburan gamma. Hasil kajian menunjukkan 
bahawa purata masa untuk isyarat dan sisihan piawai masa untuk isyarat dalam kawalan bagi carta VSI EWMA X̅ satu 
hala merosot dengan ketara di bawah taburan gamma. Untuk menangani masalah ini, kertas ini mencadangkan parameter 
carta baharu yang khususnya diperoleh untuk carta VSI EWMA X̅ satu hala di bawah taburan gamma. Selain itu, analisis 
perbandingan menunjukkan bahawa carta VSI EWMA X̅ satu hala yang dicadangkan mempunyai kelajuan pengesanan 
terbaik berbanding dengan carta Shewhart X̅ dan EWMA X̅ satu hala, apabila proses mengikuti taburan gamma. Satu 
aplikasi ilustrasi bagi carta VSI EWMA X̅ satu hala untuk memantau berat tayar bias dalam pembuatan skuter disediakan 
pada bahagian akhir kertas ini.
Kata kunci: Carta kawalan purata bergerak berpemberat eksponen; kawalan proses statistik; purata masa untuk isyarat; 
skim selang pensampelan berubah-ubah; taburan gamma
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INTRODUCTION

Statistical process control (SPC), known as a remarkable 
statistical approach in quality control, is extensively 
employed to control and monitor the manufacturing 
process. Through the application of various statistical 
methods, SPC strives to uphold and improve process 
quality by identifying trends, anomalies, and potential 
areas for improvement. Effective use of this technique 
ensures that the process operates at its optimum level and 
consistently produces high quality products. Within a range 
of advanced statistical tools in SPC, the quality control chart 
stands out as the most user-friendly and powerful approach 
in practical scenarios, due to its simplicity in analysis, 
visualisation, and fault detection. Contemporarily, many 
researchers, such as Sanmugan and Muzalwana (2022), 
Teh et al. (2015) and Teoh et al. (2024) just to mention 
a few, contribute valuably to the quality control charting 
enhancements in real-life settings, advancing methods for 
improved process stability and efficiency.

Among various types of control charts available in 
the SPC field, adaptive type control charts have garnered 
significant attention for their effectiveness in detecting 
assignable causes within processes. One of the prominent 
adaptive control charts is the variable sampling interval 
(VSI) exponentially weighted moving average (EWMA) X̅ 
control chart. The construction of the VSI EWMA X̅ chart 
involves integrating the VSI scheme with the EWMA X̅ 
chart, thereby enhancing its effectiveness and sensitivity 
in identifying process mean shifts. Owing to this feature, 
the VSI EWMA type control chart is favoured among 
practitioners for its superior performance compared to other 
existing quality control charts, like the Shewhart, synthetic, 
supplementary run rules, and fixed sampling interval 
(FSI) EWMA control charts (Wang et al. 2020; Yeong et 
al. 2017). Furthermore, in scenarios involving estimated 
process parameters, Khoo et al. (2019) implemented 
the VSI EWMA median control chart, which generally 
outperforms the conventional Shewhart, EWMA, and VSI 
run sum median control charts in identifying changes of 
the mean shifts. This VSI EWMA median control chart 
also demonstrated high efficiency in monitoring the 
post-manufacturing waiting period for product shipment 
in an industrial setting. Subsequently, Teoh et al. (2021) 
optimised the VSI EWMA X̅ control chart based on the 
normal distribution assumption and estimated process 
parameters, providing a more precise and specialised 
approach for process monitoring in practical situations. 
For effective process monitoring of both the mean and 
dispersion simultaneously under the normal distribution, 
Parvin et al. (2023) established maximum and distance 
EWMA charts that incorporate the VSI feature and 
account for unknown process parameters. These proposed 
charts have heightened sensitivity in detecting process 
changes and broadened the scope of quality control charts 
applications. In the context of industrial applications, the 
VSI EWMA chart has found widespread use in monitoring 

and controlling production and manufacturing processes. 
Example of recent applications include monitoring the 
weight of bottles in the milk bottle production process 
(Tran et al. 2020), monitoring the length, thickness, and 
inner diameter of carbon tubes in carbon fibre tubing 
manufacturing (Haq & Akhtar 2022), and monitoring the 
sintering process in mechanical manufacturing (Hu et al. 
2024). Hence, given its proven effectiveness and extensive 
real-life applications, the VSI EWMA X̅ control chart is 
considered for detailed investigation in this paper. 

In the current SPC literature, numerous studies 
on the VSI EWMA X̅ control chart are relied on the 
normal distribution model. Nevertheless, this model 
assumption often does not hold in practice, as many real-
life processes exhibit skewed behaviour, rather than the 
normal distribution (Teoh et al. 2016). Specifically, the 
gamma distribution is frequently encountered in industrial 
contexts, such as in the measurement of particulate matter 
for air pollution (Nawaz, Azam & Aslam 2021), the weight 
of bias tires in scooter manufacturing (Lee et al. 2022), the 
product weight in multiheaded weighing machines used in 
packaging manufacturing (Madrid-Alvarez, García-Díaz & 
Tercero-Gómez 2024), and the wafer fabrication process 
in semiconductor manufacturing (Deenen et al. 2024). In 
process control operations, utilising control charts designed 
based on the normal distribution assumption to monitor the 
skewed processes can lead to degraded performance in the 
detection of assignable causes (Teoh et al. 2016). These 
control charts may not adequately capture variability and 
skewness of the process, increasing the likelihood of false 
alarms or undetected issues (Noorossana, Fathizadan & 
Nayebpour 2016). Besides, in order to monitor the non-
normal processes, SPC researchers have developed three 
approaches; (1) The transformation method that transforms 
the non-normal data to normal data (Chou, Polansky & 
Mason 1998; Hamasha et al. 2022). For instance, Kao 
and Ho (2006) employed the transformation coefficient 
method to develop the S2 control chart for controlling 
sample variances when the underlying process distribution 
is gamma. However, such a method could obscure the 
true underlying behaviour of the non-normal process, as 
the statistics of the control chart are transformed into a 
complex form, (2) To develop nonparametric control charts 
that are adaptable and compatible to various distributions 
without the presumption of normality (Chakraborti & 
Graham 2019; Chakraborti, Van Der Laan & Bakir 2001). 
For example, the nonparametric multivariate control chart 
using density-sensitive novelty weights has been proposed 
by Liu, Liu and Jung (2020) for effectively monitoring 
non-normal processes in modern manufacturing industry. 
Although the nonparametric method is effective for 
monitoring non-normal processes, it usually lacks the 
statistical power and is weaker than the parametric control 
chart when the underlying process distribution can be 
modelled accurately and conforms to typical statistical 
assumptions, and (3) Developing new control charting 
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parameters tailored to specific non-normal distributions 
(Bai et al. 2024; Li et al. 2014), which is employed in this 
paper for the gamma distribution. Instead of transforming 
data or using nonparametric methods (i.e., the first and 
second approaches), the third approach designs control 
charts that directly incorporate distribution-specific 
parameters for process like the gamma distribution. This 
method preserves the true behaviour of the non-normal 
process and retains the statistical power of parametric 
methods. By proposing new charting parameters tailored 
with a specific non-normal distribution, practitioners can 
simplify the operation and construction of the control 
chart, enhancing its interpretability and reducing overall 
complexity.

Due to the beneficial of the third approach, in this 
paper, we first conduct a comprehensive analysis on 
the performance of the one-sided VSI EWMA X̅ chart, 
specifically when the quality characteristic of interest 
follows a gamma distribution. Particularly, both upper 
one-sided and lower one-sided VSI EWMA X̅ charts are 
taken into consideration. The average time to signal (ATS) 
and standard deviation of the time to signal (SDTS) criteria 
are employed to examine both the in-control and out-of-
control scenarios. Additionally, we propose new charting 
parameters for the one-sided VSI EWMA X̅ charts, which 
are specifically adapted to the gamma distribution. These 
new charting parameters are intended to guide practitioners 
to achieve the highest level of effectiveness in detecting 
various process mean shifts under the gamma distribution. 
The proposed charts guarantee an excellent in-control 
performance and demonstrate enhanced detection speed 
for monitoring mean changes in a gamma-distributed 
process. Comparative studies are also performed to assess 
the effectiveness of the proposed one-sided VSI EWMA X̅ 
control charts against other competing control charts.

The organisation of the remaining sections of this 
paper is outlined below. First, we present the operation 
framework of the two one-sided VSI EWMA X̅ charts 
under the normal distribution model, along with its run-
length properties. Subsequently, we discuss the statistical 
characteristic of the gamma distribution and assess how 
the two one-sided VSI EWMA X̅ charts perform under 
the gamma distribution. We then introduce new charting 
parameters specifically derived for the two one-sided 
VSI EWMA X̅ charts tailored for the gamma distribution, 
which are tabulated and discussed in detail. Following 
this, we conduct comparative studies among the one-sided 
Shewhart X̅, EWMA X̅, and VSI EWMA X̅ charts under the 
gamma distribution. An illustrative application of the one-
sided VSI EWMA X̅ chart is demonstrated in the subsequent 
section. Last, we wrap up with a summary of findings and 
suggest research directions for future work.

THE ONE-SIDED VSI EWMA X̅ CHARTS UNDER THE 
NORMAL DISTRIBUTION

In our context, let us define 
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performance and demonstrate enhanced detection speed for monitoring mean changes in a 

gamma-distributed process. Comparative studies are also performed to assess the effectiveness 

of the proposed one-sided VSI EWMA  control charts against other competing control charts. 

The organisation of the remaining sections of this paper is outlined below. First, we 

present the operation framework of the two one-sided VSI EWMA  charts under the normal 

distribution model, along with its run-length properties. Subsequently, we discuss the statistical 

characteristic of the gamma distribution and assess how the two one-sided VSI EWMA  

charts perform under the gamma distribution. We then introduce new charting parameters 

specifically derived for the two one-sided VSI EWMA  charts tailored for the gamma 

distribution, which are tabulated and discussed in detail. Following this, we conduct 

comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   
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Step 3 Compute  and  using Equations (1) and (4), respectively  
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 < LCL. Appropriate corrective 
measures must be executed, and any assignable causes 
must be identified and eliminated.

Typically, the operational performance of the FSI 
scheme control chart is assessed using the average run 
length (ARL) and the standard deviation of the run length 
(SDRL) criteria. Nevertheless, these ARL and SDRL 
metrics are unsuitable for the VSI scheme control chart 
due to the variation of time between two consecutive 
samples. Hence, the ATS and SDTS serve as more reliable 
indicators for measuring the effectiveness of the VSI 
scheme control chart. The ATS measures the average or 
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FIGURE 1. The graphical view of the operation for the (a) upper and 
(b) lower one-sided VSI EWMA X̅ charts
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anticipated time taken from the initial process monitoring 
until the VSI scheme control chart indicates the first out-of-
control signal, whereas the SDTS denotes the variability or 
dispersion in the time to signal of the VSI scheme control 
chart.

To compute the ATS and SDTS of the one-sided 
VSI EWMA X̅ chart, this paper adopts the Markov chain 
framework, initially introduced by Brook and Evans (1972). 
This approach is also widely employed by SPC researchers 
to assess and analyse the run-length characteristics of the 
VSI scheme control chart, as seen in the studies of Hu et al. 
(2023) and Xie et al. (2022). In this framework, the one-
sided VSI EWMA X̅ chart is represented as a discretized 
Markov chain model with (k + 2) states, assuming that 
states 0, 1, ..., k associate to the transient states. In the 
chain, the state k + 1 is defined as the absorbing state. As 
shown herewith, the complete transition probability matrix 
P is given as
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Here, 0 T represents the column vector containing all zeros and  represents the 

(k + 1)  (k + 1) matrix that consists of transition probabilities , for ,  k. In 

Equation (7),  =  denotes the column vector that ensures the sum of probabilities in 

each row equals 1, where  T represents the (k + 1)-dimensional vector with all 

ones.  

In order to calculate the probability matrix  in Equation (7), the transition probabilities 

, for ,  k, need to be identified. In the context of the upper one-sided VSI 

EWMA  chart, the interval between CL and UCL is partitioned into k subintervals, where 

each subinterval has a width 2d. Here, d = (UCL  CL)/2k. Similarly, the interval between CL 

and LCL of the lower one-sided VSI EWMA  chart is partitioned into k subintervals, each 

with a width of 2d, where d = (CL  LCL)/2k. Note that the number of subintervals is specified 

to be sufficiently large (k = 100) to ensure the accuracy of this finite method in evaluating the 

In our case, , for  k, is defined as the midpoint of the  

(7)

Here, 0 = (0, 0, …, 0)T represents the column vector 
containing all zeros and R represents the (k + 1) ×  
(k + 1) matrix that consists of transition probabilities 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  
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Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   
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To compute the ATS and SDTS of the one-sided VSI EWMA  chart, this paper adopts 

the Markov chain framework, initially introduced by Brook and Evans (1972). This approach 

is also widely employed by SPC researchers to assess and analyse the run-length characteristics 

of the VSI scheme control chart, as seen in the studies of Hu et al. (2023) and Xie et al. (2022). 
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respectively. Here,  represents the smoothing constant which satisfy . In 

Equations (5) and (6),  and  denote the coefficients for lower warning and lower control 

limits, respectively. They satisfy the condition .  It should be noted that both the 

upper and lower one-sided VSI EWMA  charts have the same centre limit (CL), which is CL 

= .    

Figure 1 provides a graphical representation of the upper and lower one-sided VSI 

EWMA  charts. From Figure 1(a), the upper one-sided VSI EWMA  chart is constructed by 

splitting it into three main regions, which are the safe region [CL, UWL], the warning region 

(UWL, UCL] and the out-of-control region (UCL, ). Similarly, referring to Figure 1(b), the 

lower one-sided VSI EWMA  chart is built by dividing the chart into three key regions, which 

are the safe region [LWL, CL], the warning region [LCL, LWL), and the out-of-control region 

( , LCL). In this paper, we only consider two sampling intervals, which are the short 

sampling interval ( ) and the long sampling interval ( ), for these two one-sided VSI EWMA 

 charts. It should be emphasized that . The adoption of only two sampling intervals 

is justified by Reynolds et al. (1988), who claimed that this approach effectively balances the 

detection speed and complexity of a VSI scheme control chart.  

 

The proposed upper and lower one-sided VSI EWMA  charts are plotted 

simultaneously, allowing for the identification of both positive (upward) and negative 

(downward) process mean shifts. Outlined herewith are the implementation steps: 

Step 1 Calculate the UWL, and UCL, for the upper one-sided VSI EWMA  chart, using 

Equations (2) and (3), respectively. Similarly, compute the LWL, and LCL, for the 

lower one-sided VSI EWMA  chart, using Equations (5) and (6), respectively  

 or 
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(k + 1)  (k + 1) matrix that consists of transition probabilities , for ,  k. In 

Equation (7),  =  denotes the column vector that ensures the sum of probabilities in 

each row equals 1, where  T represents the (k + 1)-dimensional vector with all 

ones.  

In order to calculate the probability matrix  in Equation (7), the transition probabilities 

, for ,  k, need to be identified. In the context of the upper one-sided VSI 

EWMA  chart, the interval between CL and UCL is partitioned into k subintervals, where 

each subinterval has a width 2d. Here, d = (UCL  CL)/2k. Similarly, the interval between CL 

and LCL of the lower one-sided VSI EWMA  chart is partitioned into k subintervals, each 
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identity matrix, the vector  represents the (k + 1)  1 vector comprising sampling intervals 

(with elements  or ) associated with the transient states in the discretized Markov chain 

model, and the matrix  is defined as a diagonal matrix, where the  component in matrix  

is filled by . Here,  =  if  falls in the safe regions [CL, UWL] or [LWL, CL]; otherwise, 

 =  if  is in the warning regions (UWL, UCL] or [LCL, LWL).     

To make an unbiased analysis between the FSI and VSI scheme control charts, it is 

crucial to ensure that the in-control average sampling interval (ASI0) values for both the one-

sided VSI EWMA  charts and FSI scheme control charts are identical. The average sampling 
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respectively. Here,  represents the smoothing constant which satisfy . In 

Equations (5) and (6),  and  denote the coefficients for lower warning and lower control 

limits, respectively. They satisfy the condition .  It should be noted that both the 

upper and lower one-sided VSI EWMA  charts have the same centre limit (CL), which is CL 
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Figure 1 provides a graphical representation of the upper and lower one-sided VSI 

EWMA  charts. From Figure 1(a), the upper one-sided VSI EWMA  chart is constructed by 
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( , LCL). In this paper, we only consider two sampling intervals, which are the short 

sampling interval ( ) and the long sampling interval ( ), for these two one-sided VSI EWMA 

 charts. It should be emphasized that . The adoption of only two sampling intervals 

is justified by Reynolds et al. (1988), who claimed that this approach effectively balances the 

detection speed and complexity of a VSI scheme control chart.  

 

The proposed upper and lower one-sided VSI EWMA  charts are plotted 
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Note that same definitions of q, I, R, b, and 1 are followed 
here.

PERFORMANCE ANALYSIS OF THE ONE-SIDED VSI EWMA  
CHARTS X̅ UNDER THE GAMMA DISTRIBUTION

This section starts with a discussion of the statistical 
properties of the gamma distribution. It is then followed by 
the comprehensive performance analysis of the one-sided 
VSI EWMA X̅ charts under the gamma distribution. 
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For a gamma distribution, i.e., X~Gamma (a, b), 
the probability density function (pdf) is defined as 

 
 
 

identity matrix, the vector  represents the (k + 1)  1 vector comprising sampling intervals 

(with elements  or ) associated with the transient states in the discretized Markov chain 

model, and the matrix  is defined as a diagonal matrix, where the  component in matrix  

is filled by . Here,  =  if  falls in the safe regions [CL, UWL] or [LWL, CL]; otherwise, 

 =  if  is in the warning regions (UWL, UCL] or [LCL, LWL).     

To make an unbiased analysis between the FSI and VSI scheme control charts, it is 

crucial to ensure that the in-control average sampling interval (ASI0) values for both the one-

sided VSI EWMA  charts and FSI scheme control charts are identical. The average sampling 

interval (ASI) can be determined using the following formula: 

 ASI = . (12) 

Note that same definitions of , , , , and  are followed here.     

 

PERFORMANCE ANALYSIS OF THE ONE-SIDED VSI EWMA  CHARTS UNDER 

THE GAMMA DISTRIBUTION 

This section starts with a discussion of the statistical properties of the gamma distribution. It is 

then followed by the comprehensive performance analysis of the one-sided VSI EWMA  

charts under the gamma distribution.  

 For a gamma distribution, i.e., , , the probability density function (pdf) 

is defined as , where  and  denotes the shape and scale 

parameters, respectively. It should be noticed that , , , and  represents the 

gamma function. In the gamma distribution, the mean is given by  and the standard 

deviation is . Since the skewness of the gamma distribution is solely dependent on 

the shape parameter , a decrease in the shape parameter  leads to an increase in the skewness 

, where a and 
bdenotes the shape and scale parameters, respectively. It 
should be noticed that 

 
 
 

identity matrix, the vector  represents the (k + 1)  1 vector comprising sampling intervals 

(with elements  or ) associated with the transient states in the discretized Markov chain 

model, and the matrix  is defined as a diagonal matrix, where the  component in matrix  

is filled by . Here,  =  if  falls in the safe regions [CL, UWL] or [LWL, CL]; otherwise, 

 =  if  is in the warning regions (UWL, UCL] or [LCL, LWL).     

To make an unbiased analysis between the FSI and VSI scheme control charts, it is 

crucial to ensure that the in-control average sampling interval (ASI0) values for both the one-

sided VSI EWMA  charts and FSI scheme control charts are identical. The average sampling 

interval (ASI) can be determined using the following formula: 

 ASI = . (12) 

Note that same definitions of , , , , and  are followed here.     

 

PERFORMANCE ANALYSIS OF THE ONE-SIDED VSI EWMA  CHARTS UNDER 

THE GAMMA DISTRIBUTION 

This section starts with a discussion of the statistical properties of the gamma distribution. It is 

then followed by the comprehensive performance analysis of the one-sided VSI EWMA  

charts under the gamma distribution.  

 For a gamma distribution, i.e., , , the probability density function (pdf) 

is defined as , where  and  denotes the shape and scale 

parameters, respectively. It should be noticed that , , , and  represents the 

gamma function. In the gamma distribution, the mean is given by  and the standard 

deviation is . Since the skewness of the gamma distribution is solely dependent on 

the shape parameter , a decrease in the shape parameter  leads to an increase in the skewness 

, and 

 
 
 

identity matrix, the vector  represents the (k + 1)  1 vector comprising sampling intervals 

(with elements  or ) associated with the transient states in the discretized Markov chain 

model, and the matrix  is defined as a diagonal matrix, where the  component in matrix  

is filled by . Here,  =  if  falls in the safe regions [CL, UWL] or [LWL, CL]; otherwise, 

 =  if  is in the warning regions (UWL, UCL] or [LCL, LWL).     

To make an unbiased analysis between the FSI and VSI scheme control charts, it is 

crucial to ensure that the in-control average sampling interval (ASI0) values for both the one-

sided VSI EWMA  charts and FSI scheme control charts are identical. The average sampling 

interval (ASI) can be determined using the following formula: 

 ASI = . (12) 

Note that same definitions of , , , , and  are followed here.     

 

PERFORMANCE ANALYSIS OF THE ONE-SIDED VSI EWMA  CHARTS UNDER 

THE GAMMA DISTRIBUTION 

This section starts with a discussion of the statistical properties of the gamma distribution. It is 

then followed by the comprehensive performance analysis of the one-sided VSI EWMA  

charts under the gamma distribution.  

 For a gamma distribution, i.e., , , the probability density function (pdf) 

is defined as , where  and  denotes the shape and scale 

parameters, respectively. It should be noticed that , , , and  represents the 

gamma function. In the gamma distribution, the mean is given by  and the standard 

deviation is . Since the skewness of the gamma distribution is solely dependent on 

the shape parameter , a decrease in the shape parameter  leads to an increase in the skewness 

represents the gamma function. In the gamma distribution, 
the mean is given by 

 
 
 

identity matrix, the vector  represents the (k + 1)  1 vector comprising sampling intervals 

(with elements  or ) associated with the transient states in the discretized Markov chain 

model, and the matrix  is defined as a diagonal matrix, where the  component in matrix  

is filled by . Here,  =  if  falls in the safe regions [CL, UWL] or [LWL, CL]; otherwise, 

 =  if  is in the warning regions (UWL, UCL] or [LCL, LWL).     

To make an unbiased analysis between the FSI and VSI scheme control charts, it is 

crucial to ensure that the in-control average sampling interval (ASI0) values for both the one-

sided VSI EWMA  charts and FSI scheme control charts are identical. The average sampling 

interval (ASI) can be determined using the following formula: 

 ASI = . (12) 

Note that same definitions of , , , , and  are followed here.     

 

PERFORMANCE ANALYSIS OF THE ONE-SIDED VSI EWMA  CHARTS UNDER 

THE GAMMA DISTRIBUTION 

This section starts with a discussion of the statistical properties of the gamma distribution. It is 

then followed by the comprehensive performance analysis of the one-sided VSI EWMA  

charts under the gamma distribution.  

 For a gamma distribution, i.e., , , the probability density function (pdf) 

is defined as , where  and  denotes the shape and scale 

parameters, respectively. It should be noticed that , , , and  represents the 

gamma function. In the gamma distribution, the mean is given by  and the standard 

deviation is . Since the skewness of the gamma distribution is solely dependent on 

the shape parameter , a decrease in the shape parameter  leads to an increase in the skewness 

 and the standard deviation is 

 
 
 

identity matrix, the vector  represents the (k + 1)  1 vector comprising sampling intervals 

(with elements  or ) associated with the transient states in the discretized Markov chain 

model, and the matrix  is defined as a diagonal matrix, where the  component in matrix  

is filled by . Here,  =  if  falls in the safe regions [CL, UWL] or [LWL, CL]; otherwise, 

 =  if  is in the warning regions (UWL, UCL] or [LCL, LWL).     

To make an unbiased analysis between the FSI and VSI scheme control charts, it is 

crucial to ensure that the in-control average sampling interval (ASI0) values for both the one-

sided VSI EWMA  charts and FSI scheme control charts are identical. The average sampling 

interval (ASI) can be determined using the following formula: 

 ASI = . (12) 

Note that same definitions of , , , , and  are followed here.     

 

PERFORMANCE ANALYSIS OF THE ONE-SIDED VSI EWMA  CHARTS UNDER 

THE GAMMA DISTRIBUTION 

This section starts with a discussion of the statistical properties of the gamma distribution. It is 

then followed by the comprehensive performance analysis of the one-sided VSI EWMA  

charts under the gamma distribution.  

 For a gamma distribution, i.e., , , the probability density function (pdf) 

is defined as , where  and  denotes the shape and scale 

parameters, respectively. It should be noticed that , , , and  represents the 

gamma function. In the gamma distribution, the mean is given by  and the standard 

deviation is . Since the skewness of the gamma distribution is solely dependent on 

the shape parameter , a decrease in the shape parameter  leads to an increase in the skewness 

. Since the skewness of the gamma distribution 
is solely dependent on the shape parameter a, a decrease in 
the shape parameter a leads to an increase in the skewness 
of the gamma distribution. Throughout this paper, we 
specify a 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 {1, 2, 4} and b = 1 for simplicity.
Next, we investigate the in-control performance 

of both the upper and lower one-sided VSI EWMA X̅ 
charts under the gamma distribution when the charting 
parameters are derived from the model based on the 
normal distribution assumption. Hence, some necessary 
prior specifications need to be set beforehand to obtain 
the charting parameters for the charts. We specify the in-
control ATS (ATS0) = 370.4, ASI0 = 1, 

 
 
 

performance and demonstrate enhanced detection speed for monitoring mean changes in a 

gamma-distributed process. Comparative studies are also performed to assess the effectiveness 

of the proposed one-sided VSI EWMA  control charts against other competing control charts. 

The organisation of the remaining sections of this paper is outlined below. First, we 

present the operation framework of the two one-sided VSI EWMA  charts under the normal 

distribution model, along with its run-length properties. Subsequently, we discuss the statistical 

characteristic of the gamma distribution and assess how the two one-sided VSI EWMA  

charts perform under the gamma distribution. We then introduce new charting parameters 

specifically derived for the two one-sided VSI EWMA  charts tailored for the gamma 

distribution, which are tabulated and discussed in detail. Following this, we conduct 

comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   

 

THE ONE-SIDED VSI EWMA  CHARTS UNDER THE NORMAL DISTRIBUTION 
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an in-control variance ( ), i.e., ~ ( , ), and are considered to be both independent and 

identically distributed. Following this, the two one-sided VSI EWMA  charts are constructed 

under this normal distribution model. The two one-sided VSI EWMA  charts comprise an 

upper one-sided chart for identifying positive mean shifts and a lower one-sided chart for 

 = 5, and λ = {0.1, 
0.2, 0.5}. In addition, we consider combinations of three 
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comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   
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nominal value of 370.4. As a numeric example, when λ = 
0.2 and 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5), the (ATS0, SDTS0) values of the 
upper one-sided VSI EWMA X̅ chart are (227.74, 227.53), 
(196.12, 195.98), and (164.97, 164.92) under Gamma 
(4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 
respectively, which show a considerable departure from 
the nominal value of 370.4. A substantial deterioration in 

the (ATS0, SDTS0) values is observed when λ increases, 
especially for λ = 0.5, indicating higher false alarms are 
signalled by the charts. This is unfavourable as the charts 
are ineffective and inefficient due to high false alarm rates. 
Besides, for the lower one-sided VSI EWMA X̅ charts, Table 
1 indicates that, an increase in the skewness of the gamma 
distribution results in a longer time to produce signals. This 
can be observed through the increase in the (ATS0, SDTS0) 
values (Table 1). When λ increases, the signalling time of 
the charts are relatively high as the skewness increases for 
the gamma distribution. For example, when λ = 0.5, the 
lower one-sided VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 
1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under 
the Gamma (2, 1) distribution. This significant difference 
might be due to the large variability between the normal 
and gamma distributions. Consequently, the (ATS0, SDTS0) 
values of the lower one-sided VSI EWMA X̅ chart deviate 
substantially from the nominal value of 370.4, leading a 
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EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 
1.5) are (W+, K+) 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

{(0.6159, 2.7864), (0.6299, 2.7948), 
(0.6241, 2.8185), (0.6167, 2.8552), (0.6039, 2.9361)} for 
{Gamma (5, 1), Gamma (4, 1), Gamma (3, 1), Gamma (2, 
1), Gamma (1, 1)}, respectively (Table 2). 

From Table 2, as well as Figures 2(a), 2(c), 3(a), 3(c), 
4(a), and 4(c), there are no obvious trends or patterns for 
the warning coefficients (W+ or W–) of each combination of 
sampling intervals, except for a sudden drop of the W– value 
at a = 3 for the lower one-sided VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 4.0) and λ = 0.5. For most combinations 
of sampling intervals and λ values, the W+ values lie 
between 0.58 and 0.66, while the W– values range from 
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0.40 to 0.70. Moreover, as shown in Figures 2(b), 3(b), and 
4(b), the K+ values vary between 2.20 and 3.70 across all 
combinations of sampling intervals. The K+ value exhibits 
a decreasing trend as a increases, which is likely due to 
the decrease in the skewness of the gamma distribution. 
Meanwhile, referring to Figures 2(d), 3(d), and 4(d), for 
the K– values, there are some increasing trends as the a 
value increases. The K+ value exhibits a decreasing trend 
as a increases, which is likely due to the decrease in the 
skewness of the gamma distribution. Meanwhile, referring 
to Figures 2(d), 3(d), and 4(d), for the K– values, there are 
some increasing trends as the a value increases. For any λ 
value, the K– value generally lies between 1.90 and 2.70 for 
the lower one-sided VSI EWMA X̅ charts for the selected 
sampling intervals. Note that these newly derived charting 
parameters, which are included in Table 2 and Figures 2 - 
4, are intended to serve as references and selection guides 
for practitioners.

We further assess the out-of-control performances 
of the one-sided VSI EWMA X̅ charts by using the 
charting parameters specifically derived under the gamma 
distribution. The (ATS1, SDTS1) values under Gamma (4, 
1), Gamma (2, 1), and Gamma (1, 1) distributions, for 
the upper and lower one-sided VSI EWMA X̅ charts, are 
tabulated in the right panel of Tables 3 – 5. The (ATS1, 
SDTS1) values are given for 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  
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Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   
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sided VSI EWMA  chart can be calculated using the following expressions: 
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 SDTS = , (11) 
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(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

{–2.00, –1.50, –1.00, 
–0.75, –0.50, –0.25, –0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 
1.50, 2.00} and 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 
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of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 
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to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 
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Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) predominantly outperforms other 
corresponding charts with 
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intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≤ 1.00 across all the gamma distributions (Tables 
3 & 4). For example, given λ = 0.1 and under the  (1, 1) 
distribution, the (ATS1, SDTS1) = (69.59, 68.06) of the 
upper one-sided VSI EWMA X̅ chart with 
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 Next, we investigate the in-control performance of both the upper and lower one-sided 
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Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 
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parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) exhibits 
the fastest detection speed among all the combinations of 
sampling intervals, for all the gamma distributions (Table 
5). For 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 0.75, the upper one-sided VSI EWMA X̅ charts 
with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) and (0.1, 1.9) have comparable 
performance in terms of the (ATS1, SDTS1) values. As an 
example, when λ = 0.5,  

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 0.75, and under Gamma (2, 1) 
distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 
1.07) are obtained for the upper one-sided VSI EWMA X̅ 
charts with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) and (0.1, 1.9), respectively, 
which are quite similar. Overall, when λ = 0.5 and for 
large magnitude of positive shifts (

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≥ 1.00), all the upper 

one-sided VSI EWMA X̅ charts have similar detection 
performance under the gamma distribution (Table 5). 

When considering the lower one-sided VSI EWMA X̅ 
chart, for λ = 0.1 and 

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≥ –1.00, the chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = 
(0.1, 1.5) exhibits the best detection performance compared 
to the other 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 combinations, across all the gamma 
distributions (Table 3). As a numeric example, under the 
Gamma (1, 1) distribution with λ = 0.1, the lower one-sided 
VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) has (ATS1, 
SDTS1) = (7.11, 6.02) for 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = –0.25, which are the smallest 
compared to the (ATS1, SDTS1) = (8.75, 7.54) and (16.16, 
14.56) of the lower one-sided VSI EWMA X̅ charts with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.9) and (0.1, 4.0), respectively (Table 3). 
When 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = –1.50, it is observed that the lower-sided VSI 
EWMA X̅ charts with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) and (0.1, 1.9) 
have similar (ATS1, SDTS1) performance, outperforming 
the chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 
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the Shewhart X̅ and EWMA X̅ charts are not VSI scheme 
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the (ATS, SDTS) values are required. The ATS and SDTS 
can be obtained by multiplying the ARL and SDRL with  
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 = (1.0, 
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3 are similar to those values in Tables 4 and 5. 

Tables 3 - 5 compare the (ATS1, SDTS1) values of the 
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performance and demonstrate enhanced detection speed for monitoring mean changes in a 

gamma-distributed process. Comparative studies are also performed to assess the effectiveness 

of the proposed one-sided VSI EWMA  control charts against other competing control charts. 

The organisation of the remaining sections of this paper is outlined below. First, we 

present the operation framework of the two one-sided VSI EWMA  charts under the normal 

distribution model, along with its run-length properties. Subsequently, we discuss the statistical 

characteristic of the gamma distribution and assess how the two one-sided VSI EWMA  

charts perform under the gamma distribution. We then introduce new charting parameters 

specifically derived for the two one-sided VSI EWMA  charts tailored for the gamma 

distribution, which are tabulated and discussed in detail. Following this, we conduct 

comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   

 

THE ONE-SIDED VSI EWMA  CHARTS UNDER THE NORMAL DISTRIBUTION 

In our context, let us define  as the  observation from the  sample taken from a process, 

for subgroup number  = 1, 2, , and  = 1, 2, , . Here,  represents the sample size. The 

observations  are assumed to follow a normal distribution with an in-control mean ( ) and 

an in-control variance ( ), i.e., ~ ( , ), and are considered to be both independent and 

identically distributed. Following this, the two one-sided VSI EWMA  charts are constructed 

under this normal distribution model. The two one-sided VSI EWMA  charts comprise an 

upper one-sided chart for identifying positive mean shifts and a lower one-sided chart for 

 = 5, λ 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

{0.1, 0.2, 0.5}, and 
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 {–2.00, –1.50, –1.00, –0.75, –0.50, 
–0.25, –0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00}, 
under the Gamma (4, 1), Gamma (2, 1), and Gamma (1, 
1) distributions. Note that the charting parameters (W+, K+) 
and (W–, K–) of the upper and lower one-sided VSI EWMA 
X̅ charts, respectively, under the gamma distributions, are 
obtained from Figures 2 - 4. For all levels of positive mean 
shifts, all the upper one-sided VSI EWMA X̅ charts exhibit 
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FIGURE 2. Plots of (a) W+, and (b) K+ values for the upper one-sided 
VSI EWMA X̅ chart, as well as (c) W–, and (d) K– values for the lower 
one-sided VSI EWMA X̅ chart against different a values of the gamma 
distribution, when 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

 {(0.5, 1.5), (0.3, 1.7), (0.1, 1.3), (0.1, 
1.5), (0.1, 1.9), (0.1, 4.0)} and λ = 0.1

FIGURE 3. Plots of (a) W+, and (b) K+ values for the upper one-sided 
VSI EWMA X̅ chart, as well as (c) W–, and (d) K– values for the lower 
one-sided VSI EWMA X̅ chart against different a values of the gamma 
distribution, when 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

 {(0.5, 1.5), (0.3, 1.7), (0.1, 1.3), (0.1, 
1.5), (0.1, 1.9), (0.1, 4.0)} and λ = 0.2
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FIGURE 4. Plots of (a) W+, and (b) K+ values for the upper one-sided 
VSI EWMA X̅ chart, as well as (c) , W– and (d) K– values for the lower 
one-sided VSI EWMA X̅ chart against different a values of the gamma 
distribution, when 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

 {(0.5, 1.5), (0.3, 1.7), (0.1, 1.3), (0.1, 
1.5), (0.1, 1.9), (0.1, 4.0)} and λ = 0.5

superior (ATS1, SDTS1) performances compared to the 
upper one-sided Shewhart X̅ and EWMA X̅ charts across 
all the gamma distributions, irrespective of the λ value 
(Tables 3 - 5). For instance, when 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 0.5 and λ = 0.2, the 
(ATS1, SDTS1) 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

 {(2.37, 1.89), (2.53, 2.20), (4.40, 4.60)} 
are obtained for the upper one-sided VSI EWMA X̅ charts 
with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

 {(0.1, 1.5), (0.1, 1.9), (0.1, 4.0)}, under the 
Gamma (1, 1) distribution. These (ATS1, SDTS1) values 
are the lowest compared to the (ATS1, SDTS1) = (64.04, 
63.53) and (10.67, 6.45) of the upper one-sided Shewhart X̅ 
and EWMA X̅ charts, respectively (Table 4). This signifies 
that the upper one-sided VSI EWMA X̅ chart is the most 
powerful control chart compared to the upper one-sided 
Shewhart X̅ and EWMA X̅ charts in monitoring positive 
mean shifts of the gamma distribution. Moreover, it is 
crucial to notice that, for all levels of positive mean shifts, 
the detection efficiency of the upper one-sided EWMA X̅ 
chart is greatly enhanced after incorporating the VSI feature 
across all the gamma distributions. As an example, when λ 
= 0.2 and 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 0.10, with the employment of 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 
1.5), the (ATS1, SDTS1) of the upper one-sided EWMA X̅ 
chart has reduced from (131.38, 126.85) to (96.51, 96.16), 
under the Gamma (2, 1) distribution (Table 4). This reveals 
that the upper one-sided VSI EWMA X̅ chart has faster 
detection speed compared to the FSI scheme EWMA X̅ 
chart under the gamma distribution. 

Besides, we observe that, the upper one-sided VSI 
EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) and λ = 0.1 has 
the best detection performance compared to the upper one-
sided Shewhart X̅, EWMA X̅ and other combinations of VSI 
EWMA X̅ charts across all the gamma distributions for 

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≤ 
0.50 (Table 3). This indicates that the upper one-sided VSI 
EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) and λ = 0.1, is the 
most effective chart for detecting small levels of positive 
mean shifts among all the comparing charts. For moderate 
positive mean shifts, i.e., 0.75 ≤ 

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≤ 1.00, the upper one-
sided VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) and  
λ = 0.2 offers the most effective performance compared 
to the upper one-sided Shewhart X̅, EWMA X̅, and other 
combinations of VSI EWMA X̅ charts for all the gamma 
distributions (Table 4). From Table 5, all the combinations 
of 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 for the upper one-sided VSI EWMA X̅ charts 
with λ = 0.5 outperform the upper one-sided Shewhart X̅ , 
EWMA X̅ and other combinations of VSI EWMA X̅ charts 
for large magnitude of positive mean shifts (

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≥ 1.50) 
across all the gamma distributions. 

Referring to the lower one-sided charts, for all the 
negative mean shifts, all the VSI EWMA X̅ charts generally 
have superior detection speed when comparing with the 
Shewhart X̅ and EWMA X̅ charts across all the gamma 
distributions, regardless of the λ value (Tables 3 - 5). For 
example, under the Gamma (4, 1) distribution, when 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 
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 c
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 p
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 c
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) d
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l d
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 o
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ra
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 d
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, f
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 c
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e o
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) d
is

tri
bu

tio
n.

 T
hi

s s
ig

ni
fic

an
t d
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 m
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 b
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 c
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 b
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 p
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 c
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 c
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 d
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 d
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 d
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 c
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 c
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at
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 c
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) d
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 f
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l p
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 c
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 d

er
iv

ed
 

fro
m

 th
e 

m
od

el
 b

as
ed

 o
n 

th
e 

no
rm

al
 d
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 b
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 c
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 c
on

st
ru

ct
ed

 b
as

ed
 o

n 

th
e 

ga
m

m
a 

di
st

rib
ut

io
n,

 a
ll 

th
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 C
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 p
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 f
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 d
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 d
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e c
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 a 
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, f
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 c
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w
er
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 E

W
M
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 c
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H
er
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 d

ef
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ed
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s 
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e 
st

an
da
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 c
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at
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ut
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n 
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m
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ns

 (8
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 (9
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 d

en
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 th
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m
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f t
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n 
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ro
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 c
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nv
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n 
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ro
l s
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tu
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s d
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m
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ex
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e 

M
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v 
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n 
m

et
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A
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W
M
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 c
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la

te
d 
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in

g 
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e 
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w

in
g 
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si
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s:

 

 
A
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, 
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0)
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TS
 =

 
, 
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1)
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ec
tiv

el
y,

 w
he

re
 th

e 
in
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al

 p
ro

ba
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lit
y 

ve
ct

or
 

 =
 

T  re
pr

es
en

ts
 th

e 
(k

 +
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) 
 1
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m
n 

ve
ct
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e 

fir
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 c
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er
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. I

n 
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ua
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1)
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he

 g
am

m
a 

di
st

rib
ut

io
n.

 A
n 

ill
us

tra
tiv

e 
ap

pl
ic

at
io

n 
of

 th
e 

on
e-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rt 

is
 d

em
on

st
ra

te
d 

in
 th

e 
su

bs
eq

ue
nt

 s
ec

tio
n.

 L
as

t, 
w

e 
w

ra
p 

up
 w

ith
 a

 s
um

m
ar

y 
of

 fi
nd

in
gs

 a
nd

 

su
gg

es
t r

es
ea

rc
h 

di
re

ct
io

ns
 fo

r f
ut

ur
e 

w
or

k.
   

 

TH
E 

O
N

E-
SI

D
ED

 V
SI

 E
W

M
A

 
 C

H
A

R
TS

 U
N

D
ER

 T
H

E 
N

O
RM

A
L 

D
IS

TR
IB

U
TI

O
N

 

In
 o

ur
 co

nt
ex

t, 
le

t u
s d

ef
in

e 
 as

 th
e 

 o
bs

er
va

tio
n 

fro
m

 th
e 

 sa
m

pl
e t

ak
en

 fr
om

 a 
pr

oc
es

s, 

fo
r s

ub
gr

ou
p 

nu
m

be
r 

 =
 1

, 2
, 

, a
nd

 
 =

 1
, 2

, 
, 

. H
er

e,
 

 re
pr

es
en

ts
 th

e 
sa

m
pl

e 
si

ze
. T

he
 

ob
se

rv
at

io
ns

 
 a

re
 a

ss
um

ed
 to

 fo
llo

w
 a 

no
rm

al
 d

is
tri

bu
tio

n 
w

ith
 a

n 
in

-c
on

tro
l m

ea
n 

(
) a

nd
 

an
 in

-c
on

tro
l v

ar
ia

nc
e (

), 
i.e

., 
~

(
, 

), 
an

d 
ar

e c
on

si
de

re
d 

to
 b

e b
ot

h 
in

de
pe

nd
en

t a
nd

 

id
en

tic
al

ly
 d

ist
rib

ut
ed

. F
ol

lo
w

in
g 

th
is

, t
he

 tw
o 

on
e-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rts
 a

re
 c

on
st

ru
ct

ed
 

un
de

r t
hi

s 
no

rm
al

 d
is

tri
bu

tio
n 

m
od

el
. T

he
 tw

o 
on

e-
si

de
d 

V
SI

 E
W

M
A

 
 c

ha
rts

 c
om

pr
is

e 
an

 

up
pe

r 
on

e-
si

de
d 

ch
ar

t 
fo

r 
id

en
tif

yi
ng

 p
os

iti
ve

 m
ea

n 
sh

ift
s 

an
d 

a 
lo

w
er

 o
ne

-s
id

ed
 c

ha
rt 

fo
r 

 =
 5

, a
nd

 

 
  su

bi
nt

er
va

l (
 

 d
, 

 +
 d

]. 
W

he
n 

 =
 0

, t
hi

s i
nd

ic
at

es
 th

at
 th

e c
ha

rts
 re

tu
rn

 to
 a 

re
st

ar
t 

st
at

e.
 

Th
en

, t
he

 g
en

er
ic

 el
em

en
t 

, f
or

 
, 

 
k,

 o
f t

he
 (k

 +
 1

) 
 (k

 +
 1

) t
ra

ns
ie

nt
 p

ro
ba

bi
lit

y 

m
at

rix
 

 c
an

 b
e 

ex
pr

es
se

d 
as

 fo
llo

w
s. 

  

 
Fo

r t
he

 u
pp

er
 o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 c

ha
rt,

  

 
. (

8)
 

 
 F

or
 th

e 
lo

w
er

 o
ne

-s
id

ed
 V

SI
 E

W
M

A
 

 c
ha

rt,
  

 
. (

9)
 

H
er

e,
 

 is
 d

ef
in

ed
 a

s 
th

e 
st

an
da

rd
is

ed
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n 
fu

nc
tio

n 
(c

df
) o

f t
he

 n
or

m
al

 

di
st

rib
ut

io
n.

 In
 E

qu
at

io
ns

 (8
) a

nd
 (9

), 
 d

en
ot

es
 th

e 
m

ag
ni

tu
de

 o
f t

he
 m

ea
n 

sh
ift

 o
cc

ur
rin

g 
in

 a
 

pr
oc

es
s. 

If 
 =

 0
, t

he
 p

ro
ce

ss
 is

 c
on

si
de

re
d 

as
 in

-c
on

tro
l, 

co
nv

er
se

ly
, w

he
n 

 
 0

, a
n 

ou
t-o

f-

co
nt

ro
l s

ta
tu

s i
s d

ee
m

ed
.  

 

N
ex

t, 
w

ith
 th

e 
ad

op
tio

n 
of

 th
e 

M
ar

ko
v 

ch
ai

n 
m

et
ho

d,
 th

e 
A

TS
 a

nd
 S

D
TS

 o
f t

he
 o

ne
-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rt 
ca

n 
be

 c
al

cu
la

te
d 

us
in

g 
th

e 
fo

llo
w

in
g 

ex
pr

es
si

on
s:

 

 
A

TS
 =

 
 =

 
, 

(1
0)

 

an
d 

 
SD

TS
 =

 
, 

(1
1)

 

re
sp

ec
tiv

el
y,

 w
he

re
 th

e 
in

iti
al

 p
ro

ba
bi

lit
y 

ve
ct

or
 

 =
 

T  re
pr

es
en

ts
 th

e 
(k

 +
 1

) 
 1

 

co
lu

m
n 

ve
ct

or
 w

ith
 a

 u
ni

ty
 in

 th
e 

fir
st

 c
om

po
ne

nt
 a

nd
 z

er
os

 e
ls

ew
he

re
. I

n 
Eq

ua
tio

ns
 (1

0)
 a

nd
 

(1
1)

, t
he

 m
at

rix
 

 =
 (

)
1 

is 
th

e 
ba

si
c 

m
at

rix
, t

he
 m

at
rix

 
 in

di
ca

te
s 

th
e 

(k
 +

 1
) 

 (k
 +

 1
) 

 

 
  up

pe
r o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 c

ha
rts

 a
s 

th
e 

de
gr

ee
 o

f s
ke

w
ne

ss
 fo

r t
he

 g
am

m
a 

di
st

rib
ut

io
n 

in
cr

ea
se

s, 
de

vi
at

in
g 

si
gn
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ca

nt
ly

 f
ro

m
 th

e 
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m
in

al
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al
ue

 o
f 

37
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4.
 A

s 
 a

 n
um

er
ic

 e
xa

m
pl

e,
 

w
he

n 
 =

 0
.2

 a
nd

 (
, 

) =
 (0

.1
, 1

.5
), 

th
e 

(A
TS

0, 
SD

TS
0)

 v
al

ue
s 

of
 th

e 
up

pe
r o

ne
-s

id
ed

 V
SI

 

EW
M

A
 

 c
ha

rt 
ar

e 
(2

27
.7

4,
 2

27
.5

3)
, (

19
6.

12
, 1

95
.9

8)
, a

nd
 (1

64
.9

7,
 1

64
.9

2)
 u

nd
er

 
 

(4
, 1

), 
 (2

, 1
), 

an
d 

 (1
, 1

) d
is

tri
bu

tio
ns

, r
es

pe
ct

iv
el

y,
 w

hi
ch

 sh
ow

 a 
 co

ns
id

er
ab

le
 

de
pa

rtu
re

 fr
om

 th
e 

no
m

in
al

 v
al

ue
 o

f 3
70

.4
. A

 s
ub

st
an

tia
l d

et
er

io
ra

tio
n 

in
 th

e 
(A

TS
0, 

SD
TS

0) 

va
lu

es
 is

 o
bs

er
ve

d 
w

he
n 

 in
cr

ea
se

s, 
es

pe
ci

al
ly

 fo
r 

 =
 0

.5
, i

nd
ic

at
in

g 
hi

gh
er

 fa
ls

e 
al

ar
m

s a
re

 

si
gn

al
le

d 
by

 th
e 

ch
ar

ts
. T

hi
s i

s u
nf

av
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ra
bl

e 
as

 th
e 

ch
ar

ts
 a

re
 in

ef
fe

ct
iv

e 
an

d 
in

ef
fic

ie
nt

 d
ue

 to
 

hi
gh

 fa
lse

 al
ar

m
 ra

te
s. 

B
es

id
es

, f
or

 th
e l

ow
er

 o
ne

-s
id

ed
 V

SI
 E

W
M

A
 

 ch
ar

ts
, T

ab
le

 1
 in

di
ca

te
s 

th
at

, a
n 

in
cr

ea
se

 in
 th

e 
sk

ew
ne

ss
 o

f t
he

 g
am

m
a 

di
st

rib
ut

io
n 

re
su

lts
 in

 a
 lo

ng
er

 ti
m

e 
to

 p
ro

du
ce

 

si
gn

al
s. 

Th
is

 c
an

 b
e 
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se
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ed

 th
ro

ug
h 

th
e 

in
cr
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se

 in
 th

e 
(A

TS
0, 

SD
TS

0) 
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 (
Ta

bl
e 

1)
. 

W
he

n 
 in

cr
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se
s, 

th
e s

ig
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lli
ng

 ti
m

e o
f t

he
 ch

ar
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 ar
e r

el
at

iv
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y 
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 th
e s

ke
w

ne
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 in
cr

ea
se

s 
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r t

he
 g
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m

a 
di

st
rib

ut
io

n.
 F

or
 e

xa
m

pl
e,

 w
he

n 
 =

 0
.5

, t
he

 lo
w

er
 o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 

ch
ar

t w
ith

 (
, 

) =
 (0

.1
, 1

.9
) s

ho
w

s (
A

TS
0, 

SD
TS

0)
 =

 (6
41

3.
84

, 6
41

4.
16

) u
nd

er
 th

e 
 

(2
, 1

) d
is

tri
bu

tio
n.

 T
hi

s s
ig

ni
fic

an
t d

iff
er

en
ce

 m
ig

ht
 b

e 
du

e 
to

 th
e 

la
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e 
va
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lit
y 

be
tw
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n 
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e 

no
rm

al
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nd
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am
m

a 
di

st
rib

ut
io

ns
. C

on
se

qu
en

tly
, t

he
 (A

TS
0, 

SD
TS

0)
 v

al
ue

s 
of

 th
e 

lo
w

er
 o

ne
-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rt 
de

vi
at

e 
su

bs
ta

nt
ia

lly
 f

ro
m

 th
e 

no
m

in
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ue
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f 
37

0.
4,

 le
ad

in
g 

a 

de
la

ye
d 

re
sp

on
se

 to
 th

e 
ac

tu
al

 b
eh

av
io

ur
 o

f t
he

 p
ro

ce
ss

. T
he

re
fo

re
, t

o 
ad

dr
es

s t
he

se
 p

ro
bl

em
s, 

w
e 

pr
op

os
e 

ne
w

 c
ha

rti
ng

 p
ar

am
et

er
s 

fo
r 

th
e 

on
e-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rts
 s

pe
ci

fic
al

ly
 

de
riv

ed
 u

nd
er

 th
e 

ga
m

m
a 

di
st

rib
ut

io
n.

  

Ta
bl

e 
2 

an
d 

Fi
gu

re
s 2

 
 4

 sh
ow

 th
e 

ne
w

ly
 d

er
iv

ed
 c

ha
rti

ng
 p

ar
am

et
er

s o
f t

he
 o

ne
-s

id
ed

 

V
SI

 E
W

M
A

 
 c

ha
rts

 a
ga

in
st

 d
iff

er
en

t 
 v

al
ue

s 
of

 th
e 

ga
m

m
a 

di
st

rib
ut

io
n 

fo
r 

 
 {

0.
1,

 0
.2

, 

0.
5}

, r
es

pe
ct

iv
el

y.
 A

 d
es

cr
ip

tio
n 

on
 th

e 
de

riv
at

io
n 

fo
r t

he
 n

ew
 c

ha
rti

ng
 p

ar
am

et
er

s o
f t

he
 o

ne
-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rts
, i

s e
xp

la
in

ed
 h

er
e.

 F
irs

t, 
w

e 
ad

ju
st

 E
qu

at
io

ns
 (2

), 
(3

), 
(5

), 
an

d 
(6

) 

fo
r 

th
e 

on
e-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rts
 b

y 
su

bs
tit

ut
in

g 
(

, 
) 

w
ith

 
, 

) 
of

 th
e 

ga
m

m
a 

 
{–

2.
00

, –
1.

50
, –

1.
00

, –
0.

75
, –

0.
50

, –
0.

25
, –

0.
10

, 0
.1

0,
 0

.2
5,

 0
.5

0,
 0

.7
5,

 1
.0

0,
 1

.5
0,

 2
.0

0}
, w

he
n 

 
  of

 th
e 

ga
m

m
a 

di
st

rib
ut

io
n.

 T
hr

ou
gh

ou
t t

hi
s 

pa
pe

r, 
w

e 
sp

ec
ify

 
 {

1,
 2

, 4
} 

an
d 

 =
 1

 f
or

 

si
m

pl
ic

ity
. 

 
N

ex
t, 

w
e 

in
ve

st
ig

at
e 

th
e 

in
-c

on
tro

l p
er

fo
rm

an
ce

 o
f b

ot
h 

th
e 

up
pe

r a
nd

 lo
w

er
 o

ne
-s

id
ed

 

V
SI

 E
W

M
A

 
 c

ha
rts

 u
nd

er
 th

e 
ga

m
m

a 
di

st
rib

ut
io

n 
w

he
n 

th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s a

re
 d

er
iv

ed
 

fro
m

 th
e 

m
od

el
 b

as
ed

 o
n 

th
e 

no
rm

al
 d

is
tri

bu
tio

n 
as

su
m

pt
io

n.
 H

en
ce

, s
om

e 
ne

ce
ss

ar
y 

pr
io

r 

sp
ec

ifi
ca

tio
ns

 n
ee

d 
to

 b
e 

se
t b

ef
or

eh
an

d 
to

 o
bt

ai
n 

th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

fo
r t

he
 c

ha
rts

. W
e 

sp
ec

ify
 th

e i
n-

co
nt

ro
l A

TS
 (A

TS
0)

 =
 3

70
.4

, A
SI

0 =
 1

, 
 =

 5
, a

nd
 

 =
 {

0.
1,

 0
.2

, 0
.5

}.
 In

 ad
di

tio
n,

 

w
e 

co
ns

id
er

 c
om

bi
na

tio
ns

 o
f 

th
re

e 
sa

m
pl

in
g 

in
te

rv
al

s 
(

, 
) 

 {
(0

.1
, 1

.5
), 

(0
.1

, 1
.9

), 
(0

.1
, 

4.
0)

} 
fo

r 
bo

th
 th

e 
up

pe
r 

an
d 

lo
w

er
 o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 c

ha
rts

 (
Te

oh
 e

t a
l. 

20
21

). 
Th

e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

(
, 

) o
r (

, 
) f

or
 th

e 
up

pe
r o

r l
ow

er
 o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 

ch
ar

ts
 ar

e o
bt

ai
ne

d 
un

de
r t

he
 n

or
m

al
 d

is
tri

bu
tio

n 
m

od
el

 u
si

ng
 so

m
e n

on
-li

ne
ar

 eq
ua

tio
n 

so
lv

er
s 

to
 m

ee
t t

he
 d

es
ire

d 
sp

ec
ifi

ca
tio

ns
. F

or
 il

lu
st

ra
tio

n,
 w

he
n 

A
TS

0 
= 

37
0.

4,
 A

SI
0 =

 1
, a

nd
 

 =
 5

, 

th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

of
 th

e 
up

pe
r o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 c

ha
rt 

w
ith

 (
, 

) =
 (0

.1
, 1

.9
) 

an
d 

 =
 0

.1
 a

re
 o

bt
ai

ne
d 

as
 (

, 
) =

 (0
.5

91
1,

 2
.5

80
0)

 u
nd

er
 th

e 
no

rm
al

 d
is

tri
bu

tio
n 

m
od

el
. 

Th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

fo
r 

bo
th

 th
e 

up
pe

r 
an

d 
lo

w
er

 o
ne

-s
id

ed
 V

SI
 E

W
M

A
 

 c
ha

rts
 a

re
 

ta
bu

la
te

d 
in

 T
ab

le
 1

. 
In

 t
he

 f
ol

lo
w

in
g 

di
sc

us
si

on
, 

th
e 

in
-c

on
tro

l 
an

d 
ou

t-o
f-

co
nt

ro
l 

(A
TS

, 

ST
D

S)
 v

al
ue

s a
re

 re
fe

rr
ed

 to
 a

s (
A

TS
0, 

SD
TS

0)
 a

nd
 (A

TS
1, 

SD
TS

1)
 v

al
ue

s, 
re

sp
ec

tiv
el

y.
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SE

R
T 

TA
B
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Ta
bl
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1 

di
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ys

 t
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A

TS
0, 

SD
TS

0)
 v

al
ue

s 
of

 t
he

 u
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er
 a

nd
 l

ow
er
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ne
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id

ed
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EW
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 c
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rts
 u
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er
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m
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ci
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m
m
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di
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io
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e 
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m

e 
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ar
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g 
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m
et

er
s. 

Si
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e 
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e 
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 in

 E
qu

at
io

ns
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11
), 

an
d 

(1
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ot

 c
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ed
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n 
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e 
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m

m
a 

di
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rib
ut

io
n,
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ll 
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va
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er

 t
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 g
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m
a 
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st

rib
ut

io
n 
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ne
d 

us
in
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M
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 C
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m
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lv
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g 
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0 

ite
ra

tio
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ro
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ut
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 p
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. B
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ed

 o
n 
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bl

e 
1,

 it
 is

 f
ou
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 th

at
 th

e 
(A

TS
0, 

SD
TS
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 v

al
ue

s 
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cr
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se
 f
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m
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. (

8)
 

 
 F

or
 th

e 
lo

w
er

 o
ne

-s
id

ed
 V

SI
 E

W
M

A
 

 c
ha

rt,
  

 
. (

9)
 

H
er

e,
 

 is
 d

ef
in

ed
 a

s 
th

e 
st

an
da

rd
is

ed
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n 
fu

nc
tio

n 
(c

df
) o

f t
he

 n
or

m
al

 

di
st

rib
ut

io
n.

 In
 E

qu
at

io
ns

 (8
) a

nd
 (9

), 
 d

en
ot

es
 th

e 
m

ag
ni

tu
de

 o
f t

he
 m

ea
n 

sh
ift

 o
cc

ur
rin

g 
in

 a
 

pr
oc

es
s. 

If 
 =

 0
, t
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 p

ro
ce

ss
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 c
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si
de

re
d 
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 in

-c
on

tro
l, 

co
nv

er
se

ly
, w

he
n 
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, a
n 

ou
t-o

f-

co
nt

ro
l s

ta
tu

s i
s d

ee
m

ed
.  

 

N
ex

t, 
w
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 th

e 
ad

op
tio

n 
of
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e 

M
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v 
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n 
m

et
ho
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 th
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A

TS
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V
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W
M
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n 
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 c
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cu
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te
d 
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g 
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e 
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w
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g 

ex
pr

es
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A
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, 
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0)
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d 
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TS
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, 

(1
1)
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ec
tiv

el
y,

 w
he
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 th

e 
in

iti
al

 p
ro
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lit
y 

ve
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 =
 

T  re
pr

es
en

ts
 th

e 
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 +
 1
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 1
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lu

m
n 

ve
ct
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 u
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e 

fir
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 c
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 e
ls
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 (1
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 m
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)
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c 

m
at
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, t
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 m

at
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di
ca

te
s 
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e 
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 +
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 +
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 c
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s 
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e 
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a 
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 f
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4.
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s 
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 n
um

er
ic

 e
xa

m
pl

e,
 

w
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.2

 a
nd
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 c
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.9
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, a

nd
 (1

64
.9
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64
.9

2)
 u

nd
er

 
 

(4
, 1

), 
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, 1
), 

an
d 
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) d
is
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tio
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es

pe
ct

iv
el
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 w

hi
ch
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er
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de
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rtu
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om
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m

in
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 s
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an
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l d

et
er
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0) 
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 o
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w
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cr
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r 
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ic
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in
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gh
er

 fa
ls
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e 
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 d
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hi
gh

 fa
lse
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B
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, f
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 th
e l
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 V
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W
M

A
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ar
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, T

ab
le

 1
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s 
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n 
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cr

ea
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m
a 
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st
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n 
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 c
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e 
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e o
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el
at
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w
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m
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w
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t w
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.9
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w
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A
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 =
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) d
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an
t d
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 b
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e 
to
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e 
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e 

no
rm

al
 a

nd
 g

am
m

a 
di
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, t
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0, 

SD
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al
ue
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e 
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w
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-
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V
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W
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 c
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m

 th
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m
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a 
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 b
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 p
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ce
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re
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, t

o 
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s t
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se
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ro
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s, 
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e 
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e 
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w

 c
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 p
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s 
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r 
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e 
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si
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d 
V

SI
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W
M

A
 

 c
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pe
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fic
al
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er
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e 
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m

m
a 

di
st
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ut

io
n.

  

Ta
bl

e 
2 

an
d 

Fi
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s 2

 
 4

 sh
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 th
e 

ne
w

ly
 d

er
iv

ed
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ha
rti

ng
 p

ar
am

et
er

s o
f t
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ne
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id
ed

 

V
SI

 E
W

M
A
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ha
rts
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ga

in
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 d
iff

er
en

t 
 v

al
ue

s 
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 th
e 
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m

m
a 

di
st

rib
ut

io
n 

fo
r 
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0.
1,

 0
.2

, 

0.
5}

, r
es

pe
ct

iv
el

y.
 A

 d
es

cr
ip

tio
n 

on
 th

e 
de

riv
at

io
n 

fo
r t

he
 n

ew
 c

ha
rti

ng
 p

ar
am

et
er

s o
f t

he
 o

ne
-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rts
, i

s e
xp

la
in

ed
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er
e.

 F
irs

t, 
w

e 
ad

ju
st

 E
qu

at
io

ns
 (2

), 
(3

), 
(5

), 
an

d 
(6

) 

fo
r 

th
e 

on
e-

si
de

d 
V

SI
 E

W
M

A
 

 c
ha

rts
 b

y 
su

bs
tit

ut
in

g 
(

, 
) 

w
ith

 
, 

) 
of

 th
e 

ga
m

m
a 

 {
–2

.0
0,

 
–1

.5
0,

 –
1.

00
, –

0.
75

, –
0.

50
, –

0.
25

, –
0.

10
, 0

.1
0,

 0
.2

5,
 0

.5
0,

 0
.7

5,
 1

.0
0,

 1
.5

0,
 2

.0
0}

, w
he

n 

 
  of

 th
e 

ga
m

m
a 

di
st

rib
ut

io
n.

 T
hr

ou
gh

ou
t t

hi
s 

pa
pe

r, 
w

e 
sp

ec
ify

 
 {

1,
 2

, 4
} 

an
d 

 =
 1

 f
or

 

si
m

pl
ic

ity
. 

 
N

ex
t, 

w
e 

in
ve

st
ig

at
e 

th
e 
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-c

on
tro

l p
er

fo
rm

an
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 o
f b

ot
h 

th
e 

up
pe

r a
nd
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w

er
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ne
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V
SI
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W

M
A

 
 c

ha
rts

 u
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 th

e 
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m
m

a 
di

st
rib

ut
io

n 
w

he
n 

th
e 

ch
ar

tin
g 

pa
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m
et

er
s a

re
 d

er
iv

ed
 

fro
m

 th
e 

m
od

el
 b

as
ed

 o
n 

th
e 

no
rm

al
 d

is
tri

bu
tio

n 
as

su
m

pt
io

n.
 H

en
ce

, s
om

e 
ne

ce
ss

ar
y 

pr
io

r 

sp
ec

ifi
ca

tio
ns

 n
ee

d 
to

 b
e 

se
t b

ef
or

eh
an

d 
to

 o
bt

ai
n 

th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

fo
r t

he
 c

ha
rts

. W
e 

sp
ec

ify
 th

e i
n-

co
nt

ro
l A

TS
 (A

TS
0)

 =
 3

70
.4

, A
SI

0 =
 1

, 
 =

 5
, a

nd
 

 =
 {

0.
1,

 0
.2

, 0
.5

}.
 In

 ad
di

tio
n,

 

w
e 

co
ns

id
er

 c
om

bi
na

tio
ns

 o
f 

th
re

e 
sa

m
pl

in
g 

in
te

rv
al

s 
(

, 
) 

 {
(0

.1
, 1

.5
), 

(0
.1

, 1
.9

), 
(0

.1
, 

4.
0)

} 
fo

r 
bo

th
 th

e 
up

pe
r 

an
d 

lo
w

er
 o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 c

ha
rts

 (
Te

oh
 e

t a
l. 

20
21

). 
Th

e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

(
, 

) o
r (

, 
) f

or
 th

e 
up

pe
r o

r l
ow

er
 o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 

ch
ar

ts
 ar

e o
bt

ai
ne

d 
un

de
r t

he
 n

or
m

al
 d

is
tri

bu
tio

n 
m

od
el

 u
si

ng
 so

m
e n

on
-li

ne
ar

 eq
ua

tio
n 

so
lv

er
s 

to
 m

ee
t t

he
 d

es
ire

d 
sp

ec
ifi

ca
tio

ns
. F

or
 il

lu
st

ra
tio

n,
 w

he
n 

A
TS

0 
= 

37
0.

4,
 A

SI
0 =

 1
, a

nd
 

 =
 5

, 

th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

of
 th

e 
up

pe
r o

ne
-s

id
ed

 V
SI

 E
W

M
A

 
 c

ha
rt 

w
ith

 (
, 

) =
 (0

.1
, 1

.9
) 

an
d 

 =
 0

.1
 a

re
 o

bt
ai

ne
d 

as
 (

, 
) =

 (0
.5

91
1,

 2
.5

80
0)

 u
nd

er
 th

e 
no
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al

 d
is

tri
bu

tio
n 

m
od

el
. 

Th
e 

ch
ar

tin
g 

pa
ra

m
et

er
s 

fo
r 

bo
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 th
e 

up
pe

r 
an

d 
lo

w
er
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ne
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id

ed
 V

SI
 E

W
M

A
 

 c
ha

rts
 a
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ta
bu

la
te

d 
in

 T
ab

le
 1

. 
In

 t
he

 f
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lo
w

in
g 

di
sc

us
si

on
, 

th
e 

in
-c

on
tro

l 
an

d 
ou

t-o
f-

co
nt

ro
l 

(A
TS

, 

ST
D

S)
 v

al
ue

s a
re

 re
fe

rr
ed

 to
 a

s (
A

TS
0, 

SD
TS

0)
 a

nd
 (A

TS
1, 

SD
TS

1)
 v

al
ue

s, 
re

sp
ec

tiv
el

y.
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SE

R
T 

TA
B

LE
 1

 

Ta
bl

e 
1 

di
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ys

 t
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A

TS
0, 

SD
TS

0)
 v

al
ue

s 
of

 t
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 u
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 l
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ne
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 c
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er

 n
or

m
al

 a
nd

 s
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m
m
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e 
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m

e 
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g 
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m
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er
s. 

Si
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e 
th

e 
fo
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 in

 E
qu

at
io

ns
 (1

0)
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11
), 

an
d 

(1
2)
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 c
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n 
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e 
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m

m
a 

di
st

rib
ut
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 g
am

m
a 
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n 
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e o
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ne
d 
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in
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M

on
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 C
ar

lo
 si

m
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at
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in
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0 

ite
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ut
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 p
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ed
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n 
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1,
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 f
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TS

0)
 v

al
ue

s 
de
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 c
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4.
 A
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er
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 e
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m
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e,
 

w
he

n 
 =
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.2

 a
nd

 (
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) =
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, 1
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), 
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e 
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TS
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ue
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 c
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.9
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.9
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 1
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 u
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er
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, 1
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, 1
), 

an
d 
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, 1

) d
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ns

, r
es

pe
ct

iv
el

y,
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 sh
ow
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er
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de
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rtu
re

 fr
om
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e 
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m

in
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ue
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f 3
70
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 s
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st
an

tia
l d

et
er

io
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tio
n 

in
 th

e 
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TS
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0) 

va
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es
 is

 o
bs

er
ve
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w

he
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 in
cr
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s, 
es

pe
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 =
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gh
er
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al

ar
m
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gn

al
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e 
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hi
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e 
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d 
in

ef
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 d
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, f
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 c
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e o
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 =
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(2
, 1

) d
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n.
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t d
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ce
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 b
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e 
to

 th
e 

la
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–1.00, the lower one-sided VSI EWMA X̅ charts with λ = 
0.2 and 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 

when  = 0.2 and ( , ) = (0.1, 1.5), the (ATS0, SDTS0) values of the upper one-sided VSI 

EWMA  chart are (227.74, 227.53), (196.12, 195.98), and (164.97, 164.92) under  

(4, 1),  (2, 1), and  (1, 1) distributions, respectively, which show a  considerable 

departure from the nominal value of 370.4. A substantial deterioration in the (ATS0, SDTS0) 

values is observed when  increases, especially for  = 0.5, indicating higher false alarms are 

signalled by the charts. This is unfavourable as the charts are ineffective and inefficient due to 

high false alarm rates. Besides, for the lower one-sided VSI EWMA  charts, Table 1 indicates 

that, an increase in the skewness of the gamma distribution results in a longer time to produce 

signals. This can be observed through the increase in the (ATS0, SDTS0) values (Table 1). 

When  increases, the signalling time of the charts are relatively high as the skewness increases 

for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

{ (0.1, 1.5), (0.1, 1.9), (0.1, 4.0)} have 
(ATS1, SDTS1) 

 
 
 

upper one-sided VSI EWMA  charts as the degree of skewness for the gamma distribution 

increases, deviating significantly from the nominal value of 370.4. As  a numeric example, 
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for the gamma distribution. For example, when  = 0.5, the lower one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.9) shows (ATS0, SDTS0) = (6413.84, 6414.16) under the  

(2, 1) distribution. This significant difference might be due to the large variability between the 

normal and gamma distributions. Consequently, the (ATS0, SDTS0) values of the lower one-

sided VSI EWMA  chart deviate substantially from the nominal value of 370.4, leading a 

delayed response to the actual behaviour of the process. Therefore, to address these problems, 

we propose new charting parameters for the one-sided VSI EWMA  charts specifically 

derived under the gamma distribution.  

Table 2 and Figures 2  4 show the newly derived charting parameters of the one-sided 

VSI EWMA  charts against different  values of the gamma distribution for   {0.1, 0.2, 

0.5}, respectively. A description on the derivation for the new charting parameters of the one-

sided VSI EWMA  charts, is explained here. First, we adjust Equations (2), (3), (5), and (6) 

for the one-sided VSI EWMA  charts by substituting ( , ) with , ) of the gamma 

 {(0.37, 0.57), (0.41, 0.69), (0.67, 1.49)}, 
respectively, which are lower than (ATS1, SDTS1) = (1.96, 
1.37), and (2.77, 0.91) of the lower one-sided Shewhart  
X̅ and EWMA X̅ charts, respectively (Table 4). However, 
there are exceptions in some cases when 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 –0.10 under the 
lower one-sided VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 
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EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 
4.0). This may be due to the use of a large sampling interval 
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 in the warning region of the chart, leading to a longer 
time to detect a signal for small negative mean shifts. In 
terms of the λ value, it is found that when λ = 0.1, the lower 
one-sided VSI EWMA X̅ chart with 
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 = (0.1, 1.5) 
exhibits the fastest detection speed compared to the lower 
one-sided Shewhart X̅, EWMA X̅ and other combinations of 
VSI EWMA X̅ charts in detecting small levels of negative 
mean shifts (

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 -0.25) across all the gamma distributions 
(Tables 3 - 5). For 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 ≥ = - 0.50, the lower one-sided VSI 
EWMA X̅ chart with λ = 0.2 and 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) 
generally outperforms other competing charts for all the 
gamma distributions (Table 4). When monitoring moderate 
to large shift sizes (-2.00 ≤ 

 
 
 

intervals. Note that these newly derived charting parameters, which are included in Table 2 and 

Figures 2 - 4, are intended to serve as references and selection guides for practitioners. 

INSERT TABLE 2 AND FIGURES 2  4 

We further assess the out-of-control performances of the one-sided VSI EWMA  

charts by using the charting parameters specifically derived under the gamma distribution. The 

(ATS1, SDTS1) values under Gamma (4, 1), Gamma (2, 1), and Gamma (1, 1) distributions, 

for the upper and lower one-sided VSI EWMA  charts, are tabulated in the right panel of 

Tables 3  5. The (ATS1, SDTS1) values are given for   { 2.00, 1.50, 1.00, 0.75, 0.50, 

0.25, 0.10, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)}. Table 3 corresponds to  = 0.1, Table 4 to  = 0.2, and Table 5 to  = 0.5. In view of the 

upper one-sided VSI EWMA  chart, for the cases of  = 0.1 and 0.2, the chart with ( , ) 

= (0.1, 1.5) predominantly outperforms other corresponding charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0) for   1.00 across all the gamma distributions (Tables 3 & 4). For example, 

given  = 0.1 and under the  (1, 1) distribution, the (ATS1, SDTS1) = (69.59, 68.06) of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) are the smallest compared 

to (ATS1, SDTS1) = (74.79, 73.23) and (98.57, 96.70) of the charts with ( , ) = (0.1, 1.9) 

and (0.1, 4.0), respectively. When  1.50 (the large shift sizes), for  = 0.1 and 0.2, all the 

upper one-sided VSI EWMA  charts are generally having identical detection performance for 

all the gamma distributions (Tables 3 & 4). When  = 0.5 and   0.50, the upper one-sided 

VSI EWMA  chart with ( , ) = (0.1, 1.5) exhibits the fastest detection speed among all 

the combinations of sampling intervals, for all the gamma distributions (Table 5). For  = 0.75, 

the upper one-sided VSI EWMA  charts with ( , ) = (0.1, 1.5) and (0.1, 1.9) have 

comparable performance in terms of the (ATS1, SDTS1) values. As an example, when  = 0.5, 

 = 0.75, and under Gamma (2, 1) distribution, the (ATS1, SDTS1) = (0.93, 0.94) and (0.94, 

 ≤- 0.75), the combination of 
λ = 0.5 and 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 1.5) for the lower one-sided 
VSI EWMA X̅ chart proves to be the most efficient chart, 
surpassing the lower one-sided Shewhart X̅, EWMA X̅ and 
other combinations of VSI EWMA X̅ charts across all the 
gamma distributions (Table 5).

AN ILLUSTRATIVE APPLICATION

This section illustrates a practical example for the 
application of the upper one-sided VSI EWMA X̅ chart 
under the gamma distribution for monitoring the weight of 
bias tyres in a scooter manufacturing process. This real-
life example is adopted from Lee et al. (2022). A bias tyre, 
also known as a bias-ply tyre, for a scooter is a type of 
tyre construction where the layers of fabric or plies are laid 
diagonally from bead to bead at angles typically between 
30 and 40 degrees to the centreline of the tyre. The weight 
of the bias tyre is a significant quality characteristic that 
needs to be monitored to ensure that the production of 
scooters meets manufacturers’ quality standards, to prevent 
delays or issues on the assembly line, and to reduce defects 
or returns. Therefore, it is essential to monitor the weight 
of bias tyres to achieve quality assurance and operational 
efficiency. Lee et al. (2022) determined that the weight data 
for bias tires are modelled by a gamma distribution with a 
shape parameter a = 2 and a scale parameter b = 1. These 
parameters were subsequently used for further calculations 
in this example. 

In our example, the process parameters a and b 
are directly sourced from the work of Lee et al. (2022), 
so no further estimation of the parameters is necessary. 
However, to provide a complete procedure for estimating 

and choosing the parameters a and b form real data, some 
additional methods are elaborated in this paragraph. 
When selecting the parameters a and b form real data, a 
practitioner would typically rely on empirical evidence 
from the process being monitored. In practical scenarios, 
one might analyse historical process data (often referred 
to as Phase-I data) to estimate the distribution parameters 
and validate whether the underlying assumption about 
the data distribution holds true. Statistical methods such 
as maximum likelihood estimation or moment estimation 
are commonly employed to determine these parameters 
based on available statically stable and in-control historical 
data (Wu et al. 2020). Once the parameters have been 
estimated, some specifications must be set for computing 
the proposed chart’s control limits, such as the ATS0, ASI0, 

 
 
 

performance and demonstrate enhanced detection speed for monitoring mean changes in a 

gamma-distributed process. Comparative studies are also performed to assess the effectiveness 

of the proposed one-sided VSI EWMA  control charts against other competing control charts. 

The organisation of the remaining sections of this paper is outlined below. First, we 

present the operation framework of the two one-sided VSI EWMA  charts under the normal 

distribution model, along with its run-length properties. Subsequently, we discuss the statistical 

characteristic of the gamma distribution and assess how the two one-sided VSI EWMA  

charts perform under the gamma distribution. We then introduce new charting parameters 

specifically derived for the two one-sided VSI EWMA  charts tailored for the gamma 

distribution, which are tabulated and discussed in detail. Following this, we conduct 

comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   

 

THE ONE-SIDED VSI EWMA  CHARTS UNDER THE NORMAL DISTRIBUTION 

In our context, let us define  as the  observation from the  sample taken from a process, 

for subgroup number  = 1, 2, , and  = 1, 2, , . Here,  represents the sample size. The 

observations  are assumed to follow a normal distribution with an in-control mean ( ) and 

an in-control variance ( ), i.e., ~ ( , ), and are considered to be both independent and 

identically distributed. Following this, the two one-sided VSI EWMA  charts are constructed 

under this normal distribution model. The two one-sided VSI EWMA  charts comprise an 

upper one-sided chart for identifying positive mean shifts and a lower one-sided chart for 

, λ and 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 for the VSI EWMA X̅ chart. Practitioners can 
use different ATS0 and ASI0 values to find an appropriate 
balance between false alarm rates and detection speed, 
ensuring the chart is customised to the specific need of 
their process. A smaller sample size 

 
 
 

performance and demonstrate enhanced detection speed for monitoring mean changes in a 

gamma-distributed process. Comparative studies are also performed to assess the effectiveness 

of the proposed one-sided VSI EWMA  control charts against other competing control charts. 

The organisation of the remaining sections of this paper is outlined below. First, we 

present the operation framework of the two one-sided VSI EWMA  charts under the normal 

distribution model, along with its run-length properties. Subsequently, we discuss the statistical 

characteristic of the gamma distribution and assess how the two one-sided VSI EWMA  

charts perform under the gamma distribution. We then introduce new charting parameters 

specifically derived for the two one-sided VSI EWMA  charts tailored for the gamma 

distribution, which are tabulated and discussed in detail. Following this, we conduct 

comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   

 

THE ONE-SIDED VSI EWMA  CHARTS UNDER THE NORMAL DISTRIBUTION 

In our context, let us define  as the  observation from the  sample taken from a process, 

for subgroup number  = 1, 2, , and  = 1, 2, , . Here,  represents the sample size. The 

observations  are assumed to follow a normal distribution with an in-control mean ( ) and 

an in-control variance ( ), i.e., ~ ( , ), and are considered to be both independent and 

identically distributed. Following this, the two one-sided VSI EWMA  charts are constructed 

under this normal distribution model. The two one-sided VSI EWMA  charts comprise an 

upper one-sided chart for identifying positive mean shifts and a lower one-sided chart for 

 is typically chosen in 
industry settings where collecting larger samples may not 
be feasible. For the selection of λ, practitioners can select 
based on the desired sensitivity to small or large shifts, 
while 

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 can be chosen according to the actual situation of 
the real process.

To proceed with this illustrative example, by using a = 
2 and b = 1 as obtained from Lee et al. (2022), the process 
parameters are calculated as 

 
 
 

respectively. Here,  represents the smoothing constant which satisfy . In 

Equations (5) and (6),  and  denote the coefficients for lower warning and lower control 

limits, respectively. They satisfy the condition .  It should be noted that both the 

upper and lower one-sided VSI EWMA  charts have the same centre limit (CL), which is CL 

= .    

Figure 1 provides a graphical representation of the upper and lower one-sided VSI 

EWMA  charts. From Figure 1(a), the upper one-sided VSI EWMA  chart is constructed by 

splitting it into three main regions, which are the safe region [CL, UWL], the warning region 

(UWL, UCL] and the out-of-control region (UCL, ). Similarly, referring to Figure 1(b), the 

lower one-sided VSI EWMA  chart is built by dividing the chart into three key regions, which 

are the safe region [LWL, CL], the warning region [LCL, LWL), and the out-of-control region 

( , LCL). In this paper, we only consider two sampling intervals, which are the short 

sampling interval ( ) and the long sampling interval ( ), for these two one-sided VSI EWMA 

 charts. It should be emphasized that . The adoption of only two sampling intervals 

is justified by Reynolds et al. (1988), who claimed that this approach effectively balances the 

detection speed and complexity of a VSI scheme control chart.  

 

The proposed upper and lower one-sided VSI EWMA  charts are plotted 

simultaneously, allowing for the identification of both positive (upward) and negative 

(downward) process mean shifts. Outlined herewith are the implementation steps: 

Step 1 Calculate the UWL, and UCL, for the upper one-sided VSI EWMA  chart, using 

Equations (2) and (3), respectively. Similarly, compute the LWL, and LCL, for the 

lower one-sided VSI EWMA  chart, using Equations (5) and (6), respectively  

 = 2 × 1= 2.0000 kg and 

 
 
 

To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 

 = 

 
 
 

To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 

 = 1.4142 kg. Table 6 shows the complete summary 
statistics for the simulated weight of bias tyres from a 
scooter manufacturing process. The samples for the first 
11 subgroups (from 

 
 
 

To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 

 = 1 to 11) are simulated under the in-
control case, whereas the subsequent samples (from 

 
 
 

To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 

 = 12 
to 25) are simulated under the out-of-control condition with  

 
 
 

subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   

 For the upper one-sided VSI EWMA  chart,  

 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 0.50. In Table 6, the out-of-control points are indicated 
by the boldfaced values. For illustration, we assume that 
ATS0 = 370.4, ASI0 = 1, 

 
 
 

performance and demonstrate enhanced detection speed for monitoring mean changes in a 

gamma-distributed process. Comparative studies are also performed to assess the effectiveness 

of the proposed one-sided VSI EWMA  control charts against other competing control charts. 

The organisation of the remaining sections of this paper is outlined below. First, we 

present the operation framework of the two one-sided VSI EWMA  charts under the normal 

distribution model, along with its run-length properties. Subsequently, we discuss the statistical 

characteristic of the gamma distribution and assess how the two one-sided VSI EWMA  

charts perform under the gamma distribution. We then introduce new charting parameters 

specifically derived for the two one-sided VSI EWMA  charts tailored for the gamma 

distribution, which are tabulated and discussed in detail. Following this, we conduct 

comparative studies among the one-sided Shewhart , EWMA , and VSI EWMA  charts 

under the gamma distribution. An illustrative application of the one-sided VSI EWMA  chart 

is demonstrated in the subsequent section. Last, we wrap up with a summary of findings and 

suggest research directions for future work.   
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an in-control variance ( ), i.e., ~ ( , ), and are considered to be both independent and 

identically distributed. Following this, the two one-sided VSI EWMA  charts are constructed 

under this normal distribution model. The two one-sided VSI EWMA  charts comprise an 

upper one-sided chart for identifying positive mean shifts and a lower one-sided chart for 
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matrix  can be expressed as follows.   
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distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 
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and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 

 = 0.50 for the 
upper one-sided VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 

The charting parameters for both the upper and lower one-sided VSI EWMA  charts are 

tabulated in Table 1. In the following discussion, the in-control and out-of-control (ATS, 

STDS) values are referred to as (ATS0, SDTS0) and (ATS1, SDTS1) values, respectively. 

INSERT TABLE 1 

Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 

 = (0.1, 
1.5). Since the data follow a Gamma (2, 1) distribution, 
we can directly obtain the corresponding new charting 
parameters from Table 3, which are (W+, K+) = (0.6167, 
2.8552). Using Equations (2) and (3) with these charting 
parameters, the upper warning and control limits are then 
calculated as UWL = 2 + 0.6167 × 

 
 
 

To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 
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1.4142 = 2.0895 and UCL = 2 + 2.8552 × 
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for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  
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respectively. Here,  represents the smoothing constant which satisfy . In 

Equations (5) and (6),  and  denote the coefficients for lower warning and lower control 

limits, respectively. They satisfy the condition .  It should be noted that both the 

upper and lower one-sided VSI EWMA  charts have the same centre limit (CL), which is CL 

= .    

Figure 1 provides a graphical representation of the upper and lower one-sided VSI 

EWMA  charts. From Figure 1(a), the upper one-sided VSI EWMA  chart is constructed by 

splitting it into three main regions, which are the safe region [CL, UWL], the warning region 

(UWL, UCL] and the out-of-control region (UCL, ). Similarly, referring to Figure 1(b), the 

lower one-sided VSI EWMA  chart is built by dividing the chart into three key regions, which 

are the safe region [LWL, CL], the warning region [LCL, LWL), and the out-of-control region 

( , LCL). In this paper, we only consider two sampling intervals, which are the short 

sampling interval ( ) and the long sampling interval ( ), for these two one-sided VSI EWMA 

 charts. It should be emphasized that . The adoption of only two sampling intervals 

is justified by Reynolds et al. (1988), who claimed that this approach effectively balances the 

detection speed and complexity of a VSI scheme control chart.  

 

The proposed upper and lower one-sided VSI EWMA  charts are plotted 

simultaneously, allowing for the identification of both positive (upward) and negative 

(downward) process mean shifts. Outlined herewith are the implementation steps: 

Step 1 Calculate the UWL, and UCL, for the upper one-sided VSI EWMA  chart, using 

Equations (2) and (3), respectively. Similarly, compute the LWL, and LCL, for the 

lower one-sided VSI EWMA  chart, using Equations (5) and (6), respectively  

 = 2.0000. Figure 5 displays the plot 
of the upper one-sided VSI EWMA X̅ chart with 

 
 
 

of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 

specifications need to be set beforehand to obtain the charting parameters for the charts. We 

specify the in-control ATS (ATS0) = 370.4, ASI0 = 1,  = 5, and  = {0.1, 0.2, 0.5}. In addition, 

we consider combinations of three sampling intervals ( , )  {(0.1, 1.5), (0.1, 1.9), (0.1, 

4.0)} for both the upper and lower one-sided VSI EWMA  charts (Teoh et al. 2021). The 

charting parameters ( , ) or ( , ) for the upper or lower one-sided VSI EWMA  

charts are obtained under the normal distribution model using some non-linear equation solvers 

to meet the desired specifications. For illustration, when ATS0 = 370.4, ASI0 = 1, and  = 5, 

the charting parameters of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.9) 

and  = 0.1 are obtained as ( , ) = (0.5911, 2.5800) under the normal distribution model. 
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Table 1 displays the (ATS0, SDTS0) values of the upper and lower one-sided VSI 

EWMA  charts under normal and specified gamma distributions using the same charting 

parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 

the gamma distribution, all the computed (ATS, SDTS, ASI) values under the gamma 

distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 

this paper. Based on Table 1, it is found that the (ATS0, SDTS0) values decrease for all the 
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(0.1, 1.5), for monitoring the weight of bias tyres in the 
scooter manufacturing process. 

Referring to Table 6, the plotting statistics 

 
 
 

identifying negative mean shifts. For the upper one-sided VSI EWMA  chart, its plotting 

statistic ( ) at the  sample can be expressed as  

 , for , , , (1) 

where  refers to the mean of the  sample. At the outset, the plotting statistics 

is initialised to . The corresponding upper warning limit (UWL) and upper control 

limit (UCL) are given by 

 UWL = , (2) 

and 

 UCL = , (3) 

respectively. In Equations (1)  (3),  represents the smoothing parameter which satisfy 

, while  and  are the coefficients for upper warning and upper control limits, 

respectively. It is important to point out that . 

For the lower one-sided VSI EWMA  chart, the plotting statistic ( ) can be defined 

as 

 , for , , , (4) 

with . The corresponding lower warning limit (LWL) and lower control limit (LCL) 

are 

 LWL = , (5) 

and 

 LCL = , (6) 
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TABLE 6. Summary statistics for the weight of bias tyres (in kilograms, kg) from a scooter manufacturing process

Sample Number, 

 
 
 

To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 

 
 
 

Step 2 Collect a random sample consisting of  observations and determine the sample mean, 

 

Step 3 Compute  and  using Equations (1) and (4), respectively  

Step 4 Plot  and  on the upper and lower one-sided VSI EWMA  charts, respectively 

Step 5 If  and  lie within the safe regions [CL, UWL] and [LWL, CL], the process is 

concluded as in an in-control status, and the subsequent sample is drawn after a long 

sampling interval ( ) 

Step 6 If  and  situate in the warning regions (UWL, UCL] and [LCL, LWL), the process 

remains as in an in-control status, and a short sampling interval ( ) is utilised to take 

the next sample  

Step 7 The process is concluded to be in an out-of-control status if   UCL or  LCL. 

Appropriate corrective measures must be executed, and any assignable causes must be 

identified and eliminated  

Typically, the operational performance of the FSI scheme control chart is assessed 

using the average run length (ARL) and the standard deviation of the run length (SDRL) 

criteria. Nevertheless, these ARL and SDRL metrics are unsuitable for the VSI scheme control 

chart due to the variation of time between two consecutive samples. Hence, the ATS and SDTS 

serve as more reliable indicators for measuring the effectiveness of the VSI scheme control 

chart. The ATS measures the average or anticipated time taken from the initial process 

monitoring until the VSI scheme control chart indicates the first out-of-control signal, whereas 

the SDTS denotes the variability or dispersion in the time to signal of the VSI scheme control 

chart. 

 
 
 

identifying negative mean shifts. For the upper one-sided VSI EWMA  chart, its plotting 

statistic ( ) at the  sample can be expressed as  
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is initialised to . The corresponding upper warning limit (UWL) and upper control 

limit (UCL) are given by 
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and 
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of the gamma distribution. Throughout this paper, we specify  {1, 2, 4} and  = 1 for 

simplicity. 

 Next, we investigate the in-control performance of both the upper and lower one-sided 

VSI EWMA  charts under the gamma distribution when the charting parameters are derived 

from the model based on the normal distribution assumption. Hence, some necessary prior 
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distribution are obtained using Monte Carlo simulation involving 100,000 iterations throughout 
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parameters. Since the formulae in Equations (10), (11), and (12) are not constructed based on 
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Total Elapsed Time 
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2 1.2902 2.0000 1.5 1.50
3 2.2573 2.0257 1.5 3.00
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To proceed with this illustrative example, by using  = 2 and  = 1 as obtained from 

Lee et al. (2022), the process parameters are calculated as  = 2  1=  kg and  = 

 =  kg. Table 6 shows the complete summary statistics for the simulated weight 

of bias tyres from a scooter manufacturing process. The samples for the first 11 subgroups 

(from  = 1 to 11) are simulated under the in-control case, whereas the subsequent samples 

(from  = 12 to 25) are simulated under the out-of-control condition with  = 0.50. In Table 6, 

the out-of-control points are indicated by the boldfaced values. For illustration, we assume that 

ATS0 = 370.4, ASI0 = 1,  = 5,  = 0.1, and  = 0.50 for the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5). Since the data follow a  (2, 1) distribution, we can 

directly obtain the corresponding new charting parameters from Table 3, which are ( , ) 

= (0.6167, 2.8552). Using Equations (2) and (3) with these charting parameters, the upper 

warning and control limits are then calculated as UWL = 

 =  and UCL = 

 = , respectively. Note that the centre limit is calculated as CL =  = 2.0000. 

Figure 5 displays the plot of the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5), 

for monitoring the weight of bias tyres in the scooter manufacturing process.  

Referring to Table 6, the plotting statistics  of the upper one-sided VSI EWMA  

chart with ( , ) = (0.1, 1.5) are determined using Equation (1). The working mechanism of 

the upper one-sided VSI EWMA  chart with ( , ) = (0.1, 1.5) is described as follows. 

From Figure 5, the first sample (  = 1), with  = 2.0061 locates in the safe region [CL, UWL]. 

Consequently, the next sample (  = 2) is obtained after  = 1.5 time units, which corresponds 

to the long sampling interval. This procedure resumes until the 12th sample, where its  = 

2.1199 positions in the warning region (UWL, UCL]. As a result, the subsequent sample (  = 

13) is obtained after  = 0.1 time units, corresponding to the short sampling interval. The 

 = 1), with 
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determination of the next sampling interval proceeds until  exceeds the UCL = 2.4143, 

signalling the first out-of-control status at the 20th sample, with a total elapsed time of 17.30 

time units. Quality engineers immediately investigate the assignable cause and address it 

swiftly to restore the process to its in-control operating conditions. The remaining out-of-
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subinterval (   d,  + d]. When  = 0, this indicates that the charts return to a restart  state. 

Then, the generic element , for ,  k, of the (k + 1)  (k + 1) transient probability 

matrix  can be expressed as follows.   
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 . (8) 

  For the lower one-sided VSI EWMA  chart,  

 . (9) 

Here,  is defined as the standardised cumulative distribution function (cdf) of the normal 

distribution. In Equations (8) and (9),  denotes the magnitude of the mean shift occurring in a 

process. If  = 0, the process is considered as in-control, conversely, when   0, an out-of-

control status is deemed.   

Next, with the adoption of the Markov chain method, the ATS and SDTS of the one-

sided VSI EWMA  chart can be calculated using the following expressions: 

 ATS =  = , (10) 

and 

 SDTS = , (11) 

respectively, where the initial probability vector  = T represents the (k + 1)  1 

column vector with a unity in the first component and zeros elsewhere. In Equations (10) and 

(11), the matrix  = ( ) 1 is the basic matrix, the matrix  indicates the (k + 1)  (k + 1) 
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 = (0.1, 1.5) 
and λ = 0.5 remains the most efficient chart compared 
to the Shewhart X̅, EWMA X̅, and other combinations of 
VSI EWMA X̅ charts across all the gamma distributions. 
Therefore, this paper strongly shows that the proposed 
one-sided VSI EWMA X̅ control charts demonstrate 
high effectiveness and efficiency in the gamma process 
monitoring. A practical illustration is provided to showcase 
the applicability and practicality of the proposed one-sided 
VSI EWMA X̅ chart under the gamma distribution. This 
includes some valuable insights on selecting appropriate 
parameters a and b for real industry data and determining 
the specifications necessary for effective implementation. 
By offering clear guidelines for charting parameters 
selection, it will not only enhance the reliability of the 
control chart, but also enable practitioners to customise the 
chart to meet their specific needs, ultimately resulting in 
more efficient process monitoring and improved quality 
outcomes. 

FIGURE 5. The upper one-sided VSI EWMA X̅ chart with 
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Future investigations could develop theoretical 
frameworks and optimisation algorithms tailored 
specifically for the one-sided VSI EWMA X̅ charts that 
conform to the gamma distribution, to achieve more 
effective process monitoring and enhanced efficiency. As 
an alternative, this research could be expanded to examine 
other non-normal or skewed distributions, including the 
log-normal and Weibull distributions. These efforts would 
enable the development of advanced control charts that are 
adaptable to a broader range of manufacturing and quality 
assurance environments.  
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