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ABSTRACT

An accurate and trustworthy prediction model is essential for supporting policy decisions in environmental management 
concerning water quality prediction. Nonetheless, imbalanced datasets are prevalent in this discipline and hinder 
identifying crucial ecological factors accurately. This study proposed a novel SMOTE-PCADBSCAN model to enhance the 
categorisation of water quality data by employing three key components: (i) synthetic minority over-sampling technique 
(SMOTE), (ii) principal component analysis (PCA), and (iii) density-based spatial clustering of applications with noise 
(DBSCAN). The minority class was initially augmented using SMOTE, which PCA then decreased the dimensionality. 
Subsequently, DBSCAN was utilised to generate superior-quality synthetic data by detecting and eliminating extraneous 
data points. A Malaysia-based multi-class water quality dataset was employed to determine the efficiency of this model. 
Four different versions of the dataset (Original, SMOTE, SMOTE-DBSCAN, and SMOTE-PCADBSCAN) also utilised five 
classifier types for the analysis process: (i) decision tree, (ii) random forest, (iii) gradient boosting method, (iv) adaptive 
boosting, and (v) extreme gradient boosting. Although the original datasets exhibited great accuracy, class imbalance 
occurred when detecting minority classes. Among the datasets, the metric performances of SMOTE-DBSCAN and  
SMOTE-PCADBSCAN-based synthetic datasets were superior. The highest accuracy and optimal F1 scores were also 
demonstrated by RF using the SMOTE-PCADBSCAN approach, which presented excellent water quality classification and 
imbalanced data management. Consequently, the classification accuracy of imbalanced environmental datasets could be 
enhanced by employing advanced oversampling techniques and ensemble approaches.
Keywords: DBSCAN; imbalanced data; PCA; SMOTE; water quality

ABSTRAK

Model ramalan yang tepat dan boleh dipercayai adalah penting untuk menyokong keputusan dasar dalam pengurusan 
alam sekitar berkaitan ramalan kualiti air. Walau bagaimanapun, set data yang tidak seimbang sering berlaku dalam 
disiplin ini dan menghalang pengenalan faktor ekologi yang penting dengan tepat. Penyelidikan ini mencadangkan model 
SMOTE-PCADBSCAN yang inovatif untuk meningkatkan pengelasan data kualiti air dengan menggunakan tiga komponen 
utama: (i) teknik pengambilan sampel berlebihan minoriti sintetik (SMOTE), (ii) analisis komponen utama (PCA) dan (iii) 
pengelompokan ruang berasaskan ketumpatan aplikasi dengan bunyi (DBSCAN). Kelas minoriti pada mulanya ditambah 
menggunakan SMOTE, yang kemudiannya mengalami pengurangan dimensi oleh PCA. Seterusnya, DBSCAN digunakan 
untuk menghasilkan data sintetik berkualiti tinggi dengan mengesan dan menghapuskan titik data yang tidak relevan/
berlebihan. Set data kualiti air pelbagai kelas dari Malaysia digunakan untuk menentukan keberkesanan model ini. Empat 
versi dataset yang berbeza (Asal, SMOTE, SMOTE-DBSCAN dan SMOTE-PCADBSCAN) melibatkan lima jenis pengelas 
untuk proses analisis: (i) pokok keputusan, (ii) hutan rawak, (iii) mesin penggalakan kecerunan, (iv) penggalakan adaptif 
dan (v) penggalakan kecerunan ekstrem. Walaupun dataset asal menunjukkan ketepatan yang tinggi, ketidakseimbangan 
kelas berlaku apabila mengesan kelas minoriti. Antara dataset, prestasi metrik dataset sintetik berasaskan SMOTE-
DBSCAN dan SMOTE-PCADBSCAN adalah lebih baik. Ketepatan tertinggi dan skor F1 optimum juga ditunjukkan oleh 
RF menggunakan pendekatan SMOTE-PCADBSCAN yang menunjukkan prestasi cemerlang dalam pengelasan kualiti 
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air dan pengurusan data tidak seimbang. Oleh itu, ketepatan pengelasan dataset alam sekitar yang tidak seimbang boleh 
dipertingkatkan dengan menggunakan teknik pengambilan sampel berlebihan lanjutan dan pendekatan ansambel.
Kata kunci: Data tidak seimbang; DBSCAN; kualiti air; PCA; SMOTE

INTRODUCTION

Effective environmental management and policy-making 
in ecological data analysis rely heavily on accurate water 
quality prediction. However, the challenge of imbalanced 
datasets often emerges, particularly in detecting polluted 
water events, which occur less frequently than acceptable 
water quality events. This imbalance significantly impacts 
machine learning models, as accurately identifying minority 
class occurrences is critical for effective environmental 
decision-making. Numerous studies have highlighted 
the challenges posed by imbalanced datasets in water 
quality prediction and emphasized the need for innovative 
approaches to enhance classification performance.

In Malaysia, water quality is commonly assessed 
using the Water Quality Index (WQI), a metric that 
integrates six essential variables: dissolved oxygen (DO), 
biochemical oxygen demand (BOD), chemical oxygen 
demand (COD), ammonia-nitrogen (NH3-N), suspended 
solids (SS), and pH. These variables are converted into  
sub-indices (SI) using formulas provided by the Department 
of the Environment (DOE) and combined through a 
weighted summation technique to compute the WQI  
(DOE 2022). The resultant WQI categorizes water quality 
into three classes: clean (C), slightly polluted (SP), and 
polluted (P), providing a standardized framework for 
assessing water bodies.

The importance of effective water quality management 
in Malaysian rivers has been extensively studied. Fitri et 
al. (2020) analyzed the freshwater quality of the Sungai 
Kelantan, proposing measures to mitigate pollution 
levels. Ahmed et al. (2020) assessed heavy metal levels 
in the Sungai Langat and its water supply chain, offering 
insights into drinking water safety. Yasin and Karim (2020) 
introduced a fuzzy weighted multivariate regression 
analysis to design a novel WQI model aligned with DOE 
requirements. Studies by Ahmed et al. (2022) and Hashem, 
Ahmad and Yusuf (2021) focused on pollution sources 
and river basin management for the Sungai Petani and 
Sungai Langat, respectively. These findings collectively 
underscore the need for advanced tools to manage water 
quality more effectively.

Recent advancements in oversampling techniques 
have introduced sophisticated methods to address class 
imbalance in water quality datasets. Hybrid approaches, 
such as the integration of SMOTE with Tomek Links or 
Edited Nearest Neighbors, not only balance datasets 
but also effectively mitigate noise (Dogo et al. 2021). 
Generative adversarial networks (GANs) have further 
enhanced oversampling by generating synthetic 
minority samples in a data-driven manner, improving 
the overall performance of classification models  

(Poudevigne-Durance 2024). Wong et al. (2023) 
introduced a stacked ensemble deep learning model for 
predicting water quality indices (WQI) from imbalanced 
datasets, achieving notable improvements in accuracy and 
robustness. Additionally, Shehab et al. (2023) developed 
a water quality classification model leveraging raw flush 
sets, demonstrating the utility of advanced techniques 
in managing class imbalance. These studies highlight 
the potential of integrating advanced oversampling 
methods with predictive models to support environmental  
decision-making and promote sustainable management 
practices. As water quality monitoring becomes 
increasingly critical for environmental health, the adoption 
of these advanced techniques can enhance the reliability 
of datasets, providing valuable insights for policy 
development and resource management. However, despite 
their promise, these methods often entail significant 
computational demands, are susceptible to overfitting, and 
involve complex parameter optimization, underscoring the 
need for further refinement and accessibility.

Despite these advancements, SMOTE remains widely 
used due to its simplicity, interpretability, and adaptability 
across various domains, including water quality. As 
Taloor et al. (2025) demonstrated, SMOTE significantly 
improves the performance of machine learning models 
in environmental studies. However, SMOTE has notable 
limitations, such as sensitivity to noise and its inability to 
account for data structure. To overcome these limitations, 
hybrid methods like RN-SMOTE, which incorporate noise 
reduction techniques, have been proposed to enhance 
classification performance (Arafa et al. 2022). This study 
builds on SMOTE’s foundation while addressing its 
limitations by introducing dimensionality reduction and 
clustering.

This paper proposes a novel SMOTE-PCADBSCAN 
model that integrates three components: (i) synthetic 
minority over-sampling technique (SMOTE) for class 
balancing, (ii) principal component analysis (PCA) 
for dimensionality reduction, and (iii) density-based 
spatial clustering of applications with noise (DBSCAN) 
for noise identification and removal. By enhancing the 
quality of synthetic data and reducing class disparities,  
SMOTE-PCADBSCAN model aims to improve the 
accuracy and reliability of predictive models in water 
quality classification.

The subsequent sections of this paper are organized 
as follows: the Materials and Methods section describes 
the SMOTE-PCADBSCAN model and study methodology; 
Results and Discussion presents the comparative 
performance of classifiers and datasets; and Conclusion 
summarizes key findings and outlines potential future 
research directions.
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MATERIALS AND METHODS

STUDY AND DESIGN

This study assessed the oversampling impact of the 
SMOTE-PCADBSCAN model on a multi-class water 
quality dataset obtained from the Malaysian DOE. The 
dataset encompassed diverse water quality variables, 
and the DOE station was tasked with overseeing the 
quality of all Malaysian water resources. Approximately 
5511 recordings between 2018 and 2020 were obtained 
regarding the Malaysian rivers. The primary dependent 
variable in this study was WQC. This variable classified 
the water quality into three classes: (i) C, (ii) SP, and (iii) P. 
The WQI was also employed to conduct this categorisation, 
which was further subdivided into various categories 
based on the ranges of sub-indices established by the 
DOE. Approximately 14 parameters were finalised as the 
independent variables in this study to define the WQC 
based on previous studies. Table 1 tabulates the statistical 
characteristics of the dataset used in this study.

Approximately 19% (1047/5511), 26.5% (1460/5511), 
and 54.5% (3004/5511) instances were reported in the 
dataset corresponding to C, SP, and P classes, respectively. 
Even though this observation implied a minor class 
imbalance, clean and dirty water should be accurately 
anticipated owing to the smaller sample sizes in these 
categories. Hence, the DOE necessitates efficient water 
management enforcement and conservation policies 
through a transparent and discerning process of cleaning 
and contaminating water.

SMOTE-PCADBSCAN

Considering that Chawla et al. (2002) established the highly 
effective SMOTE, this study employed the algorithm for 
the SMOTE-PCADBSCAN model by linearly interpolating 
between a randomly chosen minority sample and one of 
its neighbouring samples to produce synthetic datasets 
(Douzas, Bacao & Last 2018). A random minority sample  
( ) is initially chosen. Another sample ( ) is then selected 
from the k nearest neighbours belonging to the minority 
class as follows:

(1)

where  represents a random number from 0 to 1. SMOTE 
is also more advantageous for oversampling because it can 
prevent overfitting than other algorithms. For example, 
random oversampling (ROS) duplicates samples from the 
minority class. In contrast, the SMOTE builds synthetic 
instances (Jeatrakul, Wong & Fung 2010). This technique 
pertains to the noise in the initial dataset and the production 
of novel samples, resulting in additional dissemination 
and noise amplification. The disruptive samples (outliers) 
hinder the improvement of various classifiers when the 
datasets are oversampled using SMOTE (Cheng et al. 
2019). Hence, noise elimination methods are required 
while implementing SMOTE. This process enhances 
the efficiency of the classifiers employed for dataset 
classification by mitigating the SMOTE-related noise or 
the noise inherent in the original datasets.

TABLE 1. Summary of the statistical characteristics of the dataset used in this study

No Variable Role Description Unit Type
1 WQC Target WQC 1 = C; 2 = SP; 3 = P Categorical
2 Temp Input Temperature °C Numerical
3 COND Input Electrical Conductivity uS Numerical
4 SAL Input Salinity ppt Numerical
5 TURNTU Input Turbidity NTU Numerical
6 NO3 Input Nitrate mg/L Numerical
7 PO4 Input Phosphate mg/L Numerical
8 As Input Arsenic mg/L Numerical
9 Hg Input Mercury mg/L Numerical
10 Cd Input Cadmium mg/L Numerical
11 Cr Input Chromium mg/L Numerical
12 Pb Input Plumbum mg/L Numerical
13 Zn Input Zinc mg/L Numerical
14 OG Input Oil & Grease mg/L Numerical
15 E. coli Input Escherichia coli cfu/100 mL Numerical
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Arafa et al. (2022) developed the RN-SMOTE as 
a pre-processing technique for unbalanced binary data. 
This method initially applied the SMOTE technique to 
oversample the training data, which generated noisy 
synthetic instances in the minority class. The DBSCAN 
was then utilised to identify and eliminate noise, suggesting 
that the RN-SMOTE effectively boosts model performance. 
Ester et al. (1996) created the DBSCAN, which was a 
clustering method independent of specific parameters 
(Tran, Drab & Daszykowski 2013). This approach generally 
clusters data by calculating the density of points within a 
distance from each point in the dataset. The algorithm can 
also locate and remove extraneous data, such as random 
data, to enhance data accuracy (Kumar & Reddy 2016). 
Moreover, the DBSCAN approach categorises each point 
in the dataset into three types: (i) core, (ii) border points, 
and (iii) noise points (outliers) (Dalakleidi et al. 2017). A 
point is designated as a core point, and a new cluster is 
formed if the number of points within a neighbourhood 
distance  exceeds the minimum criterion. Alternatively, 
this point is classified as noise if it does not meet the 
requirements. The cluster is then expanded by including 
more locations within the -neighbourhood in subsequent 
iterations. Lastly, this process iterates until no additional 
points can be included, indicating the conclusion of the 
current clustering process (Ester et al. 1996). The following 
explanations present a concise summary of the DBSCAN 
algorithm for the given dataset   
(Ester et al. 1996; Sander et al. 1998):

(1) -neighborhood of a point: This term encompasses 
all points within a given distance  from  and 
forming the neighbourhood  as follows:

       (2)

(2) Directly density reachable: This term represents 
clusters of core points surrounded by border points. 
The border points are also part of the cluster, which are 
inside the -neighbourhood of a core point. A certain 
number of points (MinPts) in its -neighbourhood is 
necessary for a point to be classified as a core point 
as follows:

     (3)

(3) Density reachable: Considering  and MinPts, 
a point is considered directly density reachable 
if a sequence of points  is present, 
where  is directly density reachable from . 
This outcome is attributed to each subsequent point 

 that is directly density reachable from . 

(4) Density connected: Given  and MinPts, points  
and  are called densely connected if a point  exist 
such that both  and  are densely reachable from 

.

(5) Cluster: Considering  and MinPts, if a point  
is part of a cluster C, then the point  also belongs 
to C if it is reachable from  with high density. If 
two points  and are part of the same cluster C, it 
implies that they exhibit a high level of connectivity. 

(6) Noise: Given  and MinPts, the noise refers 
to the points in the dataset C containing cluster 

 that are not assigned to any cluster as 
follows:

                         (4)

The DBSCAN algorithm necessitates the incorporation 
of two parameters (  and MinPts). In contrast, the sorted 
k-distance graph was first proposed as a pioneering and 
extensively employed method for estimating the parameters 
of the DBSCAN algorithm (Starczewski, Goetzen & Er 
2020). This graphical method involves identifying the 
k-nearest neighbour (KNN) for each point and arranging 
them in ascending order depending on their distances. The 
location of the highest degree of curvature on the resulting 
curve is then identified to determine the value of . This 
study also utilised the silhouette index to ascertain the 
appropriate MinPts value, as it was a widely employed 
metric for assessing clustering outcomes (Blahova, 
Horecny & Kostolny 2023). Conversely, a difficulty 
occurred when using data mining clustering approaches to 
datasets containing many characteristics (Kanungo et al. 
2002). 

Previous studies identified the PCA as the most efficient 
method for reducing data in these situations (Mustakim et 
al. 2021; Shen et al. 2021; Rahman et al. 2020). Although 
the dataset used in this study is not highly dimensional, 
PCA was incorporated into the SMOTE-PCADBSCAN 
methodology for two primary reasons: (i) to simplify the 
data structure and optimize the clustering process within 
DBSCAN by reducing potential redundancies in the feature 
space, and (ii) to retain the most relevant variance in the 
data, thereby improving the identification of clusters and 
mitigating noise in synthetic data. This study subsequently 
suggested the integration of SMOTE, PCA, and DBSCAN 
components in the proposed SMOTE-PCADBSCAN model 
to provide training datasets of superior quality. Initially, the 
PCA was proposed by Pearson in 1901 and subsequently 
advanced separately by Hotelling in 1933 and Jolliffe in 
1986 (Marsboom et al. 2018). The primary goal of this 
analysis was to decrease the number of variables while 
preserving the crucial information (Kavitha & Caroline 
2015). Generally, the PCA consists of five stages as 
follows (Marsboom et al. 2018): 1) Normalising the data 
by removing the mean from each data value, 2) Calculating 
the covariance matrix, 3) Determining the eigenvalues and 
eigenvectors, 4) Selecting components and feature vectors, 
and 5) Constructing a new dataset.

Figure 1 depicts the process flow of the proposed 
SMOTE-PCADBSCAN model for this study. The process 
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begins with the water quality dataset undergoing data 
preprocessing, where missing values are handled, and 
variables are standardized to ensure consistency. Next, 
the dataset is split into training (70%) and testing (30%) 
groups. SMOTE is applied exclusively to the training data 
to generate synthetic data for minority classes, addressing 
class imbalance. Following this, PCA is used to reduce 
the dimensionality of the synthetic data, simplifying the 
data structure and retaining the most significant features. 
The reduced-dimension synthetic data is then processed 
through DBSCAN, which clusters the data and identifies 
noisy samples. Noise is removed at this stage, resulting 
in a cleaned synthetic dataset. The cleaned synthetic 
data is combined with the original training data to form 
a comprehensive training set. This final training dataset is 
used to train machine learning classifiers, while the testing 
dataset is reserved for model evaluation. 

In this study, the machine learning algorithms utilized 
include decision tree (DT) and ensemble methods such as 
random forest (RF), gradient boosting machine (GBM), 
AdaBoost, and XGBoost, all integral to the proposed 
SMOTE-PCADBSCAN model. Ensemble learning 
combines multiple base models to enhance predictive 
accuracy and robustness (Dong et al. 2020). DT algorithms, 

used for classification and regression, construct decision 
trees where nodes test attributes and branches represent 
outcomes, effectively modeling complex decision processes 
(Abedinia & Seydi 2024). RF, introduced by Breiman 
(2001), employs multiple decision trees and majority 
voting to improve predictive performance (Alqahtani et 
al. 2022). GBM iteratively adds small decision trees to 
minimize residual errors, boosting overall model accuracy 
(Sarker 2021). AdaBoost adjusts sample weights to focus 
on misclassified instances, combining weak learners into 
a strong classifier (Schapire 1999). XGBoost, a modern 
gradient boosting method, optimizes performance with 
enhanced software and hardware implementations (Chen 
& Guestrin 2016). Classifier performance was evaluated 
using six metrics: accuracy, sensitivity, specificity, 
precision, F1 score, and average F1 score.

RESULTS AND DISCUSSION

This section presents the results of applying different 
classifiers to a multi-class water quality dataset 
under four scenarios: the original dataset, SMOTE 
oversampled dataset, SMOTE-DBSCAN dataset, and  
SMOTE-PCADBSCAN dataset. The classifiers were 
evaluated using accuracy, sensitivity, specificity, 

FIGURE 1. The flowchart of the proposed  
SMOTE-PCADBSCAN model in this study
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precision, F1 score, and average F1 score to assess the 
performance improvements provided by the proposed  
SMOTE-PCADBSCAN model.

DATA PRE-PROCESSING

In this phase, various measures were taken to replace 
missing data and to standardise the data in order to achieve 
optimal classification results. Figure 2 depicts that missing 
values were observed for five variables: E. coli, PO4, 
WQC, TURNTU, and NO3, with the rate of missing values 
ranging from 0.0002% to 5.2%. These were imputed using 
the KNN method with k=5. Min-max normalisation was 
then performed to standardise the data set and ensure 
uniform scaling. Figure 3 displays the correlation matrix 
of the 14 input variables utilised in this investigation. The 
matrix showed strong correlations between COND and 
SAL, TURNTU and NO3, TURNTU and Zn, and NO3 
and Zn with correlation coefficients of 1.0, 0.99, 0.99, and 
1.0, respectively. Meanwhile, SAL, NO3, and Zn were 
excluded from the dataset to prevent repetition. The revised 
dataset consisted of 11 input variables for water quality 
classification, which were then divided into two categories: 
Training (70%) and Test (30%).

CLASS IMBALANCE

The dataset showed an imbalance in water quality classes, 
potentially affecting the training process. To address this, 
four dataset variations were generated: Original, SMOTE, 
SMOTE-DBSCAN, and SMOTE-PCADBSCAN. The 
dataset consisted of 5511 samples, with 3861 (70%) used 
for training and 1650 (30%) for testing. Table 2 summarizes 
the original dataset distribution, with 739, 2104, and 1018 
samples in classes C, SP, and P, respectively. 

SMOTE was applied to mitigate the imbalance, 
increasing the samples for classes C and P to 2217 
and 2036, respectively. Further refinement using  
SMOTE-DBSCAN adjusted these counts to 2151 (C) and 
2026 (P). The proposed SMOTE-PCADBSCAN model 
produced slightly more balanced distributions, with  
2195 (C) and 2025 (P) samples, improving class 
equalization and enhancing model performance. The final 
test dataset retained 308, 900, and 442 samples for classes 
C, SP, and P, respectively.

CLASSIFICATION

The classification phase aimed to evaluate the 
effectiveness of five algorithms—DT, RF, GBM, 
AdaBoost, and XGBoost—in determining water quality 
status across various dataset scenarios: Original, SMOTE,  
SMOTE-DBSCAN, and SMOTE-PCADBSCAN. 
Performance metrics included accuracy, sensitivity, 
specificity, precision, F1 score and average F1 score  
(Table 3).

The DT algorithm achieved an accuracy of 63.21% 
and an average F1 score of 74.61% on the original dataset. 
However, its sensitivity for classes C (49.03%) and  
P (23.98%) was notably low, despite high specificity values 
for both classes. When applied to oversampled datasets, 
the accuracy declined to 52.79%, but sensitivity for class 
P improved significantly to 91.63%, while sensitivity 
for SP decreased to 31.33%. This outcome highlights a  
trade-off between accuracy and sensitivity, underscoring 
the limitations of DT in effectively handling imbalanced 
data.

RF demonstrated superior performance, with the 
highest accuracy of 73.45% on the original dataset. 
Oversampling improved sensitivity and specificity 
for minority classes, with SMOTE-DBSCAN and  
SMOTE-PCADBSCAN yielding higher average 
F1 scores (84.07% and 84.14%, respectively). The  
SMOTE-PCADBSCAN model achieved the best 
balance across metrics, improving sensitivity for classes  
C (75.65%) and P (64.48%).

GBM achieved a maximum accuracy of 72.24% 
and high precision for class C (81.50%) on the original 
dataset. However, it exhibited lower sensitivity for classes  
P (54.98%) and SP (60.80%), indicating challenges 
in handling class imbalance. When SMOTE and  
SMOTE-DBSCAN were applied, average F1 scores 
improved to 83.42% and 83.57%, respectively, although 
accuracy slightly decreased to 71.21% and 71.45%. These 
oversampling techniques enhanced sensitivity for class 
P (67.87%) and specificity for SP (72% and 72.40%). 
The SMOTE-PCADBSCAN model produced the lowest 
accuracy (70.73%) but achieved balanced performance 
with an average F1 score of 83.08%, showing improved 
sensitivity and specificity for classes C and SP. While the 
original dataset yielded the highest accuracy for GBM, the 
SMOTE-DBSCAN dataset demonstrated a more equitable 
performance across all metrics, addressing class imbalance 
more effectively.

AdaBoost achieved the highest accuracy (68.91%) 
and precision (84.34%) for class C on the original dataset. 
However, it struggled with class imbalance, showing 
poor sensitivity for class P (40.05%) and moderate 
specificity for SP (46.13%). Accuracy slightly decreased 
with SMOTE (66.55%) and SMOTE-DBSCAN (66.79%), 
but both datasets demonstrated higher average F1 scores  
(81.29% and 81.27%, respectively), indicating better 
handling of class imbalance. These oversampling 
methods improved sensitivity for P (68.30% and 66.52%) 
and specificity for SP (73.60% and 71.73%). The  
SMOTE-PCADBSCAN model offered the best balance, 
achieving an accuracy of 67.58% and the highest average 
F1 score (81.77%). It also enhanced sensitivity for  
P (69.23%) and maintained balanced specificity across all 
classes. While AdaBoost delivered the highest accuracy 
on the original dataset, the SMOTE-PCADBSCAN model 
provided a more equitable and robust performance, 
effectively addressing class imbalance.



1635

FIGURE 2. The input variables with missing values

FIGURE 3. The correlations between input variables

TABLE 2. Summary of the training and testing dataset samples

Dataset Scenarios C SP P
Training Original 739 2104 1018

SMOTE 2217 2104 2036
SMOTE-DBSCAN 2151 2104 2026
SMOTE-PCADBSCAN 2195 2104 2025

Testing Original 308 900 442
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XGBoost achieved the highest accuracy (71.76%) 
on the original dataset but showed lower sensitivity for 
classes C (65.58%) and P (53.62%). Notably, it exhibited 
exceptional specificity for class C (96.65%). Applying 
SMOTE resulted in a slight decrease in accuracy (70.61%) 
but improved the average F1 score (82.72%), along with 
increased sensitivity for C (72.08%) and P (63.12%). 
The highest average F1 score (83.12%) was obtained 
with the SMOTE-DBSCAN dataset, which offered the 
most balanced performance, improving sensitivity  
(C: 74.03%, SP: 74.33%), precision (C: 76%, SP: 
73.84%), and specificity (C: 94.63%, P: 86.26%). The  
SMOTE-PCADBSCAN model demonstrated comparable 
accuracy (70.61%) and a slightly lower average F1 score 
(82.79%) but maintained balanced metrics across all 
classes. 

While the performance of SMOTE-PCADBSCAN did 
not significantly improve metrics for models like XGBoost 
and GBM, it notably enhanced the performance of the RF 
model. Specifically, SMOTE-PCADBSCAN increased the 
average F1 score for RF to 84.14%, the highest among all 
combinations, and improved sensitivity and specificity for 
minority classes (C and P). This highlights the importance 
of selecting the appropriate model-oversampling 
combination, as SMOTE-PCADBSCAN is particularly 
effective with RF for addressing class imbalance.

Overall, while the original dataset achieved the 
highest accuracy, the synthetic datasets, particularly 
SMOTE-DBSCAN and SMOTE-PCADBSCAN, provided 
more robust and balanced performance. These findings 
highlight their effectiveness in addressing class imbalance 
and improving classification results.

PERFORMANCE EVALUATION

Accurately identifying C and P classes is essential in water 
quality classification to treat polluted rivers promptly. 
Given that this classification system consisted of three 
classes (C, SP, and P), noteworthy outcomes were reported 
when various algorithms (DT, RF, GBM, AdaBoost, and 
XGBoost) evaluated different training datasets (Original, 
SMOTE, SMOTE-DBSCAN, and SMOTE-PCADBSCAN). 
Out of these options, the most effective strategy for 
increasing classification performance was to combine the 
RF algorithm with the proposed SMOTE-PCADBSCAN 
model in this study. Meanwhile, the DT algorithm 
demonstrated simplicity and interpretability. Nevertheless, 
the proper management of intricate water quality when 
accounting for various sampling methodologies using DT 
must be further assessed. Even though a good accuracy of 
63.21% with the original dataset was produced with the 
original dataset using DT in this study, its performance 
decreased dramatically to 52.79% when applied to the 
SMOTE, SMOTE-DBSCAN, and SMOTE-PCADBSCAN 
datasets. This outcome was attributed to the insufficient 
consideration of imbalanced data distribution by DT, 
leading to lower identification performance of C and P.

This study demonstrated that RF was the optimal 
algorithm compared to other models across all datasets. 
The finding was concluded due to its capability to 
achieve the maximum accuracy of 73.45% on the 
original dataset. When SMOTE, SMOTE-DBSCAN, and  
SMOTE-PCADBSCAN were applied, higher system 
performances were also observed. These observations 
were due to the PCA and DBSCAN components boosting 
the capability of RF to handle imbalanced data efficiently. 
Consequently, the resilience and reliability of RF in 
recognising C and P were showcased through the maximum 
accuracy and average F1 score levels. The equitable 
precision and recall variables denoted the effectiveness 
of RF with the proposed SMOTE-PCADBSCAN model in 
this study. Exceptional specificity and sensitivity values 
in C and P were reported using this model, promoting 
dependable water quality monitoring and prompt 
intervention in contaminated rivers. Thus, a thorough 
and detailed comprehension of the data was verified 
owing to three factors: (i) RF algorithm, (ii) ensemble 
approach incorporating the decisions of several trees, and 
(iii) SMOTE-PCADBSCAN. These factors contributed to 
the most optimal classification accuracy and ensured the 
precise identification of crucial water quality categories. 
Eventually, efficient environmental management and 
pollution control could be realised using the proposed 
study model.

CONCLUSIONS

This study successfully classified water quality using 
a labelled, multi-class dataset with the help of various 
machine learning classifiers. Three methods - SMOTE, 
SMOTE-DBSCAN, and SMOTE-PCADBSCAN - were 
employed to address class imbalance in the dataset. A 
systematic performance comparison of five classifiers 
(DT, RF, GBM, AdaBoost, and XGBoost) was conducted 
across four dataset versions, demonstrating improvements 
in classification accuracy. Missing values were addressed 
through KNN imputation, while strongly correlated 
variables were removed during the pre-processing stage to 
eliminate redundancy and improve the dataset’s reliability. 
The oversampling techniques, particularly SMOTE-based 
methods, proved beneficial for minority classes, leading to 
more accurate water quality assessments.

Although the original dataset often achieved the 
highest accuracy, its inability to handle class imbalance 
effectively for minority classes was evident. The 
synthetic datasets generated using SMOTE-DBSCAN and  
SMOTE-PCADBSCAN demonstrated a more balanced and 
robust performance across key metrics, including accuracy 
and F1 score. Notably, the RF model paired with the 
proposed SMOTE-PCADBSCAN approach significantly 
improved performance, making it an effective tool for 
addressing class imbalance in environmental datasets. The 
RF-SMOTE-PCADBSCAN combination was found to be 
a reliable method for promptly and accurately identifying 
clean and polluted rivers, contributing to improved 
environmental management and public health outcomes.
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While this study demonstrated the effectiveness of 
the proposed SMOTE-PCADBSCAN method, several 
limitations should be acknowledged. First, the study 
focused on improving the SMOTE algorithm and did 
not incorporate recent data imbalance techniques for 
comparison due to time constraints. This limits the breadth 
of the analysis and the generalizability of the findings 
to other advanced oversampling methods. Second, the 
evaluation was conducted on a single dataset, which may 
not fully represent the diversity of environmental data. 
Future studies should validate the model using datasets 
from different geographical regions or with varying class 
distributions. Lastly, while the SMOTE-PCADBSCAN 
model demonstrated enhanced performance for RF, the 
improvements for other classifiers were less pronounced, 
suggesting the need for further refinement and exploration 
of hybrid methods to enhance compatibility with other 
machine learning algorithms.

In summary, integrating data pre-processing and 
advanced oversampling techniques with powerful machine 
learning algorithms can address the challenges posed by 
imbalanced datasets. The RF-SMOTE-PCADBSCAN 
model developed in this study proved effective for water 
quality classification and shows potential for broader 
applications in environmental studies. Further research 
should focus on testing these methods on larger, more 
diverse datasets and refining oversampling techniques to 
extend their applicability in environmental data science.
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