- 1 Which group of matters the particles are IONS?
 - A Polystyrene, Sulphur, Grafite
 - B Zink, Mercury, Sodium chloride
 - C Water, Ethanol, Benzene
 - D Argon, Helium, Diamond
- 2 Which particles are NOT bonded by secondary forces?
 - A Water molecules H_2O in ice.
 - B Helium atoms He in gaseous helium.
 - C Nitrogen and oxygen atoms in NO_3^- ions.
 - D Molecules of $CH_2=CH_2$.
- **3** What is the nature of particles in sulphur?
 - A S atoms.
 - B S_2 molecules.
 - C Sulphide ions S^{2-} .
 - D S_8 molecules.
- 4 Which of the following is NOT a primary bond?
 - A Hydrogen bond
 - B Elektrovalent bond
 - C Covalent bond
 - D Metallic bond
- 5 From state of matter point of view, what is the feature that make the difference in solid, liquid, and gaseous states of water?
 - A Mass of the particles.
 - B Inter-particle distance.
 - C Density of the particles.
 - D The strength of the inter-particle forces.
- 6 In a 0.5 L closed container, 0.6 g of nitrogen gas was sealed. What is the plausible figure to represent the ratio between the total volume of nitrogen molecules to the volume of the container.
 - A 1:1 B 1:10 C 1:100 D 1:10 000

- 7 One mole of each of the following matters are contained in identical containers. Which container is the heaviest?
 - A Chlorine gas container
 - B Hydrogen gas container
 - C Nitrogen gas container
 - D Helium gas container
- 8 A gas is quoted in mass (or weight). Which of the parameter of the gas that you firstly need in order to estimate its pressure?
 - A Temperature
 - B Molar mass
 - C Volume
 - D Universal gas constant
- **9** For an amount of gas at a constant temperature, data on the variation of pressure P and volume V were obtained. If the data were plot as PV versus V what would you expect the characteristic of the plot?
 - A A straight line of positive gradient passing through the origin.
 - B A straight line of negative gradient passing through the origin.
 - C A straight line parallel to the horizontal axis.
 - D A straight line of positive gradient and positive intercept (on vertical axis).
- 10 Which of these properties of gas is not a parameter in the gas state equation?
 - A Colour
 - B Molar mass
 - C Volume
 - D Pressure
- **11** What is the kinetic energy of 1 mol of a gas in 1 L volume under 1 atm pressure?
 - A 0.0152 J
 - B 0.15 J
 - C 1.5 J
 - D 152 J
- 12 In every collision between any two particles in an ideal gas,
 - A Activation energy is achieved.
 - B The energy of the particles before and after the collision are the same.
 - C The velocity of the particles after the collision is lower.
 - D Some of the energy of the particles before the collision is converted into heat after the collision which gives rise to the temperature of the gas.

- **13** What did van der Waals say about the pressure of a real gas in comparison if the gas were ideal?
 - A The pressure of a real gas is not affected by the interaction among particles of the gas.
 - B The pressure of a real gas is dependant only on the energy transfer in the collision of the particle with the wall of the vessel.
 - C The pressure of a real gas is lower than the ideal gas due to the interaction among particles of the gas.
 - D The pressure of a real gas is proportional to the interaction forces among the particles of the gas.
- 14 Which of the following is NOT an expression or a statement that formulate the Dalton's Law of partial pressure of mixing gases?
 - A $P = P_A + P_B + P_X$, when gases A, B, and X are mixed.
 - B The total pressure of mixture of gases A, B and X is the sum of the individual partial pressure of the gases.
 - C $P_A = x_A P$ where x_A is the mol fraction of gas A in a mixture, and P is the total pressure.
 - D The expression $P = P_A + P_B + P_X$, occurs when gases A, B, and X are miscible.
- 15 12 mol of CO gas under a pressure of 2900 kPa at 298 K was obseved to have a volume of 10 dm³. Obviously this gas does not behave like an ideal gas. Why? $[R = 8.314 \text{ JKmol}^{-1}]$
 - A The gas is under a very high pressure.
 - B The particle density is too high.
 - C There are too many particles of the gas to behave ideally.
 - D The data do not fit the PV = nRT relationship.

Figure 1

- 16 Figure 1 shows the distribution of energies of particles in a sample of a gas at two different temperature T_1 and T_2 , where T_1 is higher than T_2 . What is NOT right about the plot?
 - A The fraction of particles at peak energy for T_1 distribution should be lower than that of T_2 distribution.
 - B The peak energy for T_1 distribution should be at a higher temperature than that of T_2 distribution.
 - C The area under the curve for T_2 distribution should be loer than that of T_1 distribution.
 - D T_2 distribution curve should be broader than that of T_1 distribution.
- 17 n-Octane C_8H_{18} has a lower vapour pressure than n-hexane C_6H_{14} although both have very similar molecular nature. What is the possible explanation?
 - A Hexane molecules are more spherical than octane molecules.
 - B The heavier octane molecules have less kinetic energy.
 - C Hexane molecules repel each other stronger than that of octane molecules.
 - D Octane has a higher molecular mass, thus has higher van der Waals forces among the molecules.
- 18 The lowest level of sense of smell of H_2S in human is 0.15 ppb (part per billion). This level MOST PLAUSIBLY means,
 - A In every hundred billions (100 000 000 000) of particles in the air, 15 particles are H_2S .
 - B In every ten billions (10 000 000 000) mol of air, 15 mol are H_2S .
 - C In every billion (1 000 000 000) g of air, 15 g are H_2S .
 - D In every billion (1 000 000 000) cm^3 of air, 15 cm³ are H₂S.
- **19** On average, 3 mg of helium is found in every ton (1000 kg) of earth crust. In term of ppm (part per million), it is,
 - A 0.003 ppm
 - B 3.00 ppm
 - C 3000 ppm
 - D 3 000 000 ppm
- 20 The nitrogen content in the air is 75 percent by mass. In term of ppm (part per million), it is,
 - A 750 ppm
 - B 7500 ppm
 - C 75 000 ppm
 - D 750 000 ppm

21 An x% aqueous solution of a solute of $M \text{ g mol}^{-1}$ molar mass has a density of d g mL⁻¹. What is the *molarity* of the solution?

$$A \qquad 10d\left(\frac{M}{x}\right)$$
$$B \qquad \left(\frac{10M}{dx}\right)$$
$$C \qquad 10d\left(\frac{x}{M}\right)$$
$$D \qquad \left(\frac{dM}{10x}\right)$$

- **22** A glucose $(C_6H_{12}O_6 = 180 \text{ g mol}^{-1})$ solution is 0.429 M in concentration with a density of 1.16 g mL⁻¹, when expressed in *molality* it is,
 - A 0.20 m
 - B 0.33 *m*
 - C 0.40 m
 - D 0.396 m
- **23** A solution of a substance with a molar mass M g mol⁻¹ is m molal in concentration and d g mL⁻¹density. The concentration when expressed in *molarity* is,

A	$\frac{1000md}{1000+mM}$
В	$\frac{1000 + md}{1000 mM}$
С	<u>md</u> mM
D	$\frac{1000md}{mM}$

A solution of a substance with a molar mass $M \text{ g mol}^{-1}$ is y% in concentration. The *molality* of the solution is,

A
$$\frac{1000y}{100M-y}$$

B
$$\frac{1000(\frac{y}{M})}{100-y}$$

C
$$\frac{1000y}{M-100y}$$

D
$$\frac{(\frac{y}{M})}{100-y}$$

- **25** A solution of phosphoric acid with a molar mass 98 g mol⁻¹ is 35.4% in concentration. The *molality* of the acid is,
 - A 3.62 m
 - B 5.59 m
 - C 6.71 *m* D 7.26 *m*
 - D /.20 m
- 26 The widely used saline in hospital is a 0.9% solution of sodium chloride in distilled water. Assuming its density is 1 g mL⁻¹, what is the molarity of the solution? (Na = 23, Cl = 35.5)
 - A 0.17 M
 - B 0.15 M
 - C 0.0015 M
 - D 0.017 M
- 27 MOLAL solution is said to be "thermally-stable" because,
 - A Its concentration in molal (*m*) does not change when the temperature of the solution changes.
 - B Molal solution does not dissociate by a temperature change.
 - C Temperature does not affect the solubility of a solute.
 - D Thermal stability of a solution depends on its concentration.
- 28 The following phenomena are colligative properties, EXCEPT,
 - A Freezing point depression of a solution
 - B Boiling point elevation of a solution
 - C Osmotic pressure
 - D Dialysis
- **29** Freezing point depression of a solution depends on the physical characteristics of the solute dissolve in it. That characteristic is,
 - A the freezing point of the solute
 - B the phase of the solute
 - C the molecular structure of the solute
 - D the number of particles of the solute.
- **30** Ebulioscopic constant of cyclohexane (boliling point, 80° C) is 3 K kg mol⁻¹ (K m^{-1}). A solution X was made by dissolving 10 grams of X (of relative molar mass of 100) in 1 kg of cyclohexane. Solution Y was made by dissolving Y (of relative molar mass of 1000) in 1 kg of cyclohexane. What would be the mass of Y so that the solution Y boils at the same temperature as that of solution X?
 - A 1 g B 10 g
 - C = 50 g
 - D = 100 g

31 An amount of n mol of a solid P was dissolved in a solvent Q at a temperatur T kelvin to give a V volume of an ideal solution. In terms of these data, this solution shows an osmotic pressure π equals to, [R, universal gas constant]

$$A = \frac{RT}{nV}$$
$$B = \frac{RT}{V} \ln n$$
$$C = \frac{nRT}{V}$$
$$D = -\frac{nRT}{V}$$

- 32 For a change (chemical or physical change) that had taken place in a system,
 - A The heat absorbed ΔQ by the system is independent of the path along which the change had taken place.
 - B The work done ΔW by the system is independent of the path along which the change had taken place.
 - C The change in internal energy ΔE is independent of the path along which the change had taken place.
 - D The sum of heat change ΔQ and the accompanying work ΔW is independent of the path along which the change had taken place.
- **33** During an endothermic chemical reaction,
 - A A system becomes warmer, and additional heat is gained from surroundings
 - B A system becomes warmer, and the chemical substances undergo an increase in potential energy
 - C A system becomes cooler, and the chemical substances undergo an increase in potential energy
 - D A system becomes cooler, and the chemical substances undergo a decrease in potential energy
- **34** For a chemical reaction taking place at a constant pressure. Which one of the following is NOT true?
 - $A \qquad \Delta E = E_f E_i$
 - $\mathbf{B} \qquad \Delta \mathbf{E} = \mathbf{E}_{\text{product}} \mathbf{E}_{\text{reactants}}$
 - $C \qquad \Delta E = q + w$
 - $D \qquad \Delta E = \Delta H + P \Delta V$

- **35** For the reaction, $A_2(g) + 2BC(g) \implies B_2(s) + 2AC(g)$ taking place in an isolated system, the enthalpy of the product is lower than that of the reactants. Which one of the following statements is true for the system?
 - A The potential energy of the system decreases as the reactants are converted to products
 - B The kinetic energy of the system decreases as the reactants are converted to products
 - C The total energy of the system decreases as the reactants are converted to products
 - D The total mass of the system are not changes
- 36 At a constant-volume system, the change in internal energy of the system is
 - A $\Delta E = q_V$
 - B $\Delta E = C_V$
 - C $\Delta E = \Delta H$
 - D $\Delta E = 0$
- 37 A boundary that does permit energy transfer as heat is called
 - A adiabatic
 - B exothermic
 - C diathermic
 - D isolated
- **38** Which of the following statements is not true for the internal energy?
 - A The internal energy is the total energy of a system
 - B The internal energy is a state function
 - C The internal energy is measured in Joule (J)
 - D If no work is done on the process, the internal energy is equal to zero.
- **39** Use the thermochemical equation

$$O_3(g) + OH(g) \longrightarrow H(g) + 2O_2(g) \qquad \Delta H^o = 36.3 \text{ kJ}$$

What is ΔH° for the reaction of 1.0 g of O₃(g)?

А	0.57 kJ
В	0.76 kJ
С	18.15 kJ
D	36.30 kJ

40 Use the following thermochemical equations:

$$\begin{array}{ll} {}^{1}\!\!\!/_2 \mathrm{Cl}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) & & \Delta H^o = 102.5 \text{ kJ} \\ {}^{1}\!\!\!/_2 \mathrm{Cl}_2(\mathrm{g}) + {}^{3}\!\!\!/_2 \mathrm{O2}(\mathrm{g}) & & \sim \mathrm{ClO}_3(\mathrm{g}) \\ \mathrm{Cl}_2(\mathrm{g}) + {}^{7}\!\!\!/_2 \mathrm{O2}(\mathrm{g}) & & \sim \mathrm{Cl}_2 \mathrm{O}_7(\mathrm{g}) \\ \end{array} \qquad \qquad \qquad \Delta H^o = 272.0 \text{ kJ} \\ \end{array}$$

to determine ΔH^o for $3ClO_3(g) \longrightarrow Cl_2O_7(g) + ClO_2(g)$

- A -90.5 kJ
- B 90.5 kJ
- C 219.5 kJ
- D 439.0 kJ

Substance	$\Delta_{\rm f} H^o$ (kJmol ⁻¹)
CaO(s)	-635.6
CaCO ₃ (s)	-1206.9
$C_2H_2(g)$	226.6
$CO_2(g)$	-393.5
$H_2O(l)$	-285.80
O ₂ (g)	0

Table 1 The molar enthalpy of substances

41 Using the data in Table 1, calculate the heat of decomposition in the reaction,

 $CaCO3(s) \longrightarrow CaO(s) + CO_2(g)$

- A 42.66 kJ
- B 1243.58 kJ
- C 3588.62 kJ
- D -1243.58 kJ
- 42 Calculate the heat of combustion of acetylene, CH≡CH from the standard enthalpies of formation listed in **Table 1**.
 - A 0.0 kJ
 - B -905.9 kJ
 - C -2598.8 kJ
 - D -9059.0 kJ
- **43** For a chemical reaction, ΔH is < 0 and ΔS is < 0 also. This meant that
 - A The reaction must be spontaneous regardless of temperature
 - B The reaction must be spontaneous at high temperature
 - C The reaction may or may not be spontaneous, but spontaneity is favoured at low temperatures
 - D We cannot make any conclusion about spontaneity from the limited information presented.

- 44 Of the species listed below, which one should possess the highest standard entropy (S^o)?
 - $CH_4(g)$ А $COCl_2(g)$ В
 - С $C_2H_4(g)$
 - D $C_4H_{10}(g)$
- 45 The criterion for a spontaneous chemical reaction is
 - $\Delta E > 0$ А $\Delta G < 0$ В $\Delta H > 0$ С $\Delta S < 0$ D
- Which one of the following property in thermodynamics is not a state function 46
 - enthalpy А
 - В entropy
 - С internal energy
 - work D
- Iron undergoes solid-solid transition at 911°C as it is heated from 25 °C to 1000 47 ^oC. Given $\Delta_{trs}H^o = 0.9 \text{ kJmol}^{-1}$, calculate $\Delta_{trs}S^o$ for the changes?
 - $0.76 \text{ JK}^{-1} \text{mol}^{-1}$ А
 - 0.92 JK⁻¹mol⁻¹ В
 - 0.99 JK⁻¹mol⁻¹ С
 - 10.11 JK⁻¹mol⁻¹ D
- Predict the enthalpy of fusion of iron at 1536°C if $\Delta_{fus}S^{\circ}$ is 9.2 JK⁻¹mol⁻¹. **48**
 - 5.1 kJmol⁻¹ А
 - 9.2 kJmol^{-1} В
 - 14.1 kJmol⁻¹ С
 - 16.6 kJmol⁻¹ D
- Consider the reversible expansion of 1.0 mol of oxygen from 25 °C and 24.8 L 49 to 427 $^o\!C$ and 38.8 L. Assuming ideal gas behaviour, calculate ΔS_{sys} for this process. (For O₂(g); $C_{p,m} = 29.355 \text{ JK}^{-1} \text{mol}^{-1}$, $C_{\nu,m} = 21.041 \text{ JK}^{-1} \text{mol}^{-1}$)
 - 17.97 JK⁻¹mol⁻¹ А
 - 21.68 JK⁻¹mol⁻¹ 28.79 JK⁻¹mol⁻¹ В
 - С
 - D 43.37 JK⁻¹mol⁻¹

50 Determine ΔG° for the reaction

 $C(s) + CO_2(g) \longrightarrow 2CO(g)$

Given $\Delta H^{\circ} = 172$. 46 kJ and $\Delta S^{\circ} = 175.87$ JK⁻¹

- A 52.44 kJ
- B 120.02 kJ
- C 168.06 kJ
- D 172.46 kJ

1	2	3	4	5	6	7	8	9	10
В	С	D	А	В	D	А	В	С	Α
11									
D	В	С	D	D	В	D	А	А	D
21									
С	D	А	В	В	В	А	D	D	D
31									
С	D	С	D	А	А	С	D	В	Α
41									
А	С	С	D	В	D	А	D	В	В

SELAMAT MAJU JAYA