The Malaysian Journal Of Analytical Sciences Vol 13 No 1 (2009): 52 – 62

 

 

 

SORPtion of cu(II) by chemically grafted hydroxamic

acid-zeolite

 

(Erapan Cu(II) oleh Zeolit Terubahsuai Dengan Asid Hidroksamik)

 

Md Jelas Haron1*, Nur Anisah Shafie1, Nor Azah Yusof1, Anuar Kassim1, W.M.Z. Wan Yunus1, S.M. Talebi2

 

1Chemistry Department, Universuti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Department of Chemistry, The University of Isfahan, Hezar Jarib, Isfahan, Iran

 

*Corresponding author: mdjelas@fsas.upm.edu.my

 

 

Abstract

Sorption of Cu(II) by zeolite sorbent chemically modified with hydroxamic acid (HASiZP) is described.  The maximum sorption capacity of Cu(II) occurred at pH 5.   Sorption capacity of Cu(II) by HASiZP was doubled compared to the original zeolite.  Kinetic study shows that Cu(II) sorption followed by second order kinetic model.  The sorption of Cu(II) followed Langmuir isotherm model with maximum capacity of 33.32 mg/g at 25°C and increased to 48.12 mg/g at 70°C.  Cu(II) sorption by the HASiZP was endothermic and spontaneous processes with positive values of  entropy changes.

 

Keywords:  Hydroxamic acid-grafted zeolite, Cu(II), sorption.

 

References

1.     M.A. Stylianou, V.J. Inglezakis, K.G. Moustakas. 2007.  Removal of Cu (II) in fixed and batch reactors using natural zeolite and exfoliated vermiculite as sorbents.  Desalination, 215: 133–142.

2.     D. Mohan, C.U. Pittman Jr., P.H. Steele. 2006.  Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent.  J. Colloid Interface Sci., 297: 489–504.

3.       B. Zhu, T. Fan and D. Zhang. 2008. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J Hazard. Materials, 153: 300-308.

4.         T. A. Kurniawan, G. Y.S. Chan, W.H. Lo and S. Babel. 2006.  Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Env. 388: 409-426.

5.     Environmental Quality Act 1974, Malaysia. 1999.  Direct Art Company. Kuala Lumpur.

6.     E, Erdem, N. Karapinar and R. Donat. 2004.  The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280: 309–314.

7.     H. K. An, B. Y. Park and D. S. Kim. 2001.  Crab Shell for the removal of heavy metals. Water Research, 35: 3551-3556.

8.     Jei-Kwon Moon, Chong-Hun Jung, Eil-Hee Lee, Hyung-Tae Kim and Yong-Gun Shul. 2002.  Preparation of PAN-zeolite 4A Composite Ion Exchanger and its Uptake Behavior for Sr and Cs Ions in Acid Solution. Korean J. Chem. Eng., 19(5): 838-842.

9.     T. Gebremedhin-Haile, M.T. Olguın, M.T and M Solache-Rios. 2003. Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic materials. Water Air Soil Pollut., 148: 179–200.

10.   U. Ulusoy and S. Simsek. 2005. Lead removal by polyacrylamide-bentonite and zeolite composites: Effect of phytic acid immobilization. Journal of Hazardous Materials, B127:163–171.

11.   M.I. Panayotova. 2001. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.  Waste Manag., 21(7): 671-676.

12.   P. Panneerselvam, N. Thinakaran, K.V. Thiruvenkataravi, M. Palanichamy and S. Sivanesan. 2008. Phosphoric acid modified-Y zeolites: A novel, efficient and versatile ion exchanger.  J Hazard Mater., 159: 427-34.

13.   M.K. Doula and A. Dimirkou. 2008. Use of an iron-overexchanged clinoptilolite for the removal of Cu(II) ions from heavily contaminated drinking water samples. Journal of Hazardous Materials, 151: 738–745.

14.   S. Wang, T. Terdkiatburana and M.O. Tadι. 2008.  Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems.  Separation and Purification Technology, 62: 64-70.

15.   R. Mendez, and V. N. S. Pillai. 1990.  Synthesis, Characterization and application of a hydroxamic acid resin.  Talanta, 37: 591-594.

16.   M.J. Haron, W.M.Z.Wan.Yunus, M.Z. Desa and A. Kassim. 1994.  Synthesis and properties of poly (hydroxamic acid) from crosslinked poly(methacrylate).  Talanta, 4:805-807.

17.   F. Abd Rahim. 2009. M Sc Thesis, Universiti Putra Malaysia.

18.   V. I. Fadeeva, T.I. Tikhomirova, I.B. Yuferova and G.V. Kudryavtsev. 1989. Preparation, Properties and analytical application of silica with chemically grafted hydroxamic acid group. Analytica Chimica Acta, 219:  201-212.

19.   P. Castaldi, L. Santona, S. Enzo, P. Melis. 2008. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations.  Journal of Hazardous Materials, 156: 428–434.

20.   A.K. Singh, D.P. Singh, K.K. Pandey and V.N. Singh. 1988.  Wollastonite as sorbent for removal Fe (II) from water.  J. Chem. Technol. Biotechnol., 42: 39–47.

21.   G. McKay and Y.S. Ho.  1999.  The sorption of lead (II) on peat. Water Res., 33: 585–587.

22.   G. McKay and Y.S. Ho. 1999.  Pseudo-second order model for sorption processes.  Process Biochem., 34: 451–460.

23.   W.J.Weber and J.M. Morris. 1963.  Kinetics of adsorption on carbon from solutions.  J. Sanit. Eng. Div. Am. Soc. Eng., 89: 31–39.

24.   M. J. Haron, P.S. Ooi and A. Kassim. 2008.  Sorption of arsenate by stanum(IV)-exchanged zeolite P.  Malays. J. Analytical Sciences, 12: 310-321.

25.   D. Mohan and K.P. Sing. 2002. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse an agricultural waste.  Water Res., 36: 2304–2318.

26.   T. Mishra and S.K. Tiwari. 2006.  Studies on sorption properties of zeolite derived from Indian fly ash.  J. Hazard. Mater., 137: 299-303.

 




Previous                    Content                    Next