| Sains Malaysiana 52(11)(2023): 3027-3044
                
         http://doi.org/10.17576/jsm-2023-5211-02
            
           
             
           The Mangking Sandstone
            Formation of Kuala Tahan to Kampung Bantal: Sedimentology and Depositional Environment
  
 (Pembentukan Batu Pasir Mangking Kuala Tahan ke Kampung Bantal: Sedimentologi dan Persekitaran Pemendapan)
            
           
             
           KHOR WEI CHUNG1,*, KAMAL ROSLAN MOHAMED2, CHE AZIZ
            ALI2, MUHAMMAD ASHAHADI DZULKAFLI2 & JASMI AB TALIB3
  
           
             
           1Geology Programme,
            Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  
           2Geology Programme,
            Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
            Selangor, Malaysia
  
           3Department of
            Geosciences, Faculty of Science and Technology, Universiti Technologi PETRONAS, 32610 Seri Iskandar, Perak,
            Malaysia
  
           
             
           Diserahkan: 30 Mei 2023/Diterima: 3 November 2023
            
           
             
           Abstract
            
           The Mangking Sandstone of Tembeling Group in the Kuala Tahan region records part of the infill of the continental
            extensional basin formed at the end of the Triassic. Described facies of this formation include sandy matrix conglomerate
            (that shows evidence of pseudoplastic debris flow and
            traction-dominated deposition), sandstones with trough, tabular and horizontal
            stratification, laminated and massive mudstone. Groups
              of associated facies are arranged into six distinct
              architectural elements (channel, sandy bedform,
              crevasse splay, laminated sand sheet, downstream and lateral accretion and
              floodplain fines), which are constant with a fluvial origin for the succession.
              The types of architectural elements present and their relationship to each
              other demonstrate that the Mangking Sandstone
              preserves a record of a meandering river system.
  
 
             
           Keywords: Depositional environment; facies analysis; fluvial; Mangking Sandstone; Tembeling Group
            
           
             
           Abstrak
            
           Formasi Batu Pasir
            Mangking yang merupakan Kumpulan Tembeling di rantau Kuala Tahan merekodkan
            sebahagian daripada lembangan perluasan kebenuaan yang dibentuk pada akhir
            Trias. Fasies yang ditakrifkan dalam pembentukan ini termasuk konglomerat
            matriks berpasir (yang menunjukkan bukti aliran puing pseudo-plastik dan
            pemendapan secara golekan), batu pasir bersilang palung, bersilang mendatar
            serta batu lumpur berlaminasi dan masif. Enam sekutuan fasies disusun menjadi
            enam unsur arkitektur yang menyokong tafsiran fluvial (alur, perlapisan berpasir, perlapisan helaian pasir, megar krevas, tokokan hilir dan mendatar serta dataran banjir). Jenis arkitektur dan hubungan sesamanya menunjukkan Batu Pasir Mangking ini dienapkan dalam sistem sungai berliku.
  
 
             
           Kata kunci: Analisis fasies; Batu Pasir Mangking; fluvial; Kumpulan Tembeling; persekitaran enapan
            
           
             
           RUJUKAN
            
           Allen, J.R.L. 1983. Studies in
            fluviatile sedimentation: Bars, bar-complexes and sandstone sheets
            (low-sinuosity braided streams) in the brownstones (L. Devonian), welsh
            borders. Sedimentary Geology 33(4):
            237-293. 
  
 Allen,
            J.R.L. 1963. The classification of cross-stratified units, with notes on their
            origin. Sedimentology 2(2): 93-114. 
  
 Bown, T.M. & Kraus,
            M.J. 1981. Lower Eocene alluvial paleosols (Willwood Formation, Northwest
            Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and
            basin analysis. Palaeogeography,
              Palaeoclimatology, Palaeoecology 34: 1-30. 
  
 Bridge, J.S. & Lunt, I.A. 2006. Depositional
            models of braided rivers. In Braided Rivers: Process, Deposits,
              Ecology and Management, edited by Jarvis, I., Sambrook Smith, G.H., Best,
            J.L., Bristow, C.S. & Petts, G.E. Blackwell Publishing. pp. 11-50.
  
 Bridge,
            J.S. & Diemer, J.A. 1983. Quantitative interpretation of an evolving
            ancient river system. Sedimentology 30(5):
            599-623. 
  
 Brierley, G. 2006.
            Floodplain sedimentology of the Squamish River, British Columbia: Relevance of
            element analysis. Sedimentology 38(4):
            735-750. 
  
 Cant, D.J. & Walker,
            R.G. 1978. Fluvial processes and facies sequences in the sandy braided South
            Saskatchewan River, Canada. Sedimentology 25: 625-648. 
  
 Cant, D.J. & Walker, R.G. 1976.
            Development of a braided-fluvial facies model for the Devonian Battery Point
            Sandstone, Quebec. Canadian Journal of Plant Science 13(1): 102-119.
  
           Capuzzo, N. &
            Wetzel, A. 2004. Facies and basin architecture of the Late Carboniferous
            Salvan‐Dorénaz continental basin (Western Alps, Switzerland/France). Sedimentology 51(4): 675-697. 
  
 Collinson,
            J.D. 1978. Vertical sequence and sand body shape in alluvial sequences. In Fluvial Sedimentology, edited by Miall,
            A.D. Calgary: Can. Soc. Petrol. Geol. 5: 577-586. 
  
 Costa, J.E. 1988. Rheologic,
            geomorphic and sedimentologic differenctiation of water floods,
            hyperconcentrated flows, and debris flows. In Flood Geomorphology,
            edited by Baker, V.R., Kochel, R.C. & Patton, P.C. New York: Wiley. pp.
            113-222.
  
           Fielding, C.R. & Webb, J.A.
            2008. Facies and cyclicity of the Late Permian Bainmedart Coal Measures in the
            Northern Prince Charles Mountains, MacRobertson Land, Antartica. Sedimentology 43(2): 295-322.
  
           Gibling,
            M.R. & Rust, B.R. 2006. Ribbon sandstones in the Pennsylvanian Waddens Cove
            Formation, Sydney Basin, Atlantic Canada: The influence of siliceous duricrusts
            on channel-body geometry. Sedimentology 37(1): 45-66.
  
           Goro,
            I., Salihu, H.D., Jibrin, B.W., Waziri, N.M. & Abdullahi, I.N. 2015.
            Characterization of a massive sandstone interval: Example from Doko Member of
            Bida Formation, Northern Bida Basin, Nigeria. Univeral Journal of Geoscience 2: 53-61.    
  
 Halfar,
            J., Riegel, W. & Walther, H. 1998. Facies architecture and sedimentology of
            a meandering fluvial system: A Palaeogene example from the Weisselster Basin,
            Germany. Sedimentology 45(1): 1-17. 
  
 Harbury,
            N.A., Jones, M.E., Audley-Charles, M.G., Metcalfe, I. & Mohamed, K.R. 1990.
            Structural evolution of Mesozoic Peninsular Malaysia. Journal of Geological Society of London 147: 11-26. 
  
 Hein,
            F.J. & Walker, R.G. 1977. Bar evolution and development of stratification
            in the gravelly, braided Kicking Horse River, British Columbia, Canada. Journal Earth Sciences 14: 562-570. 
  
 Heller,
            P.L. & Paola, C. 1996. Downstream changes in alluvial architecture: An
            exploration of controls on channel-stacking patterns. Journal of Sedimentary Research 66(2): 297-306. 
  
 Hjellbakk,
            A. 1997. Facies and fluvial architecture of a high-energy braided river: The
            Upper Proterozoic Seglodden Member, Varanger Peninsula, northern Norway. Sedimentary Geology 114(1-4): 131-161. 
  
 Jackson II, R.G. 1978.
            Preliminary evaluation of lithofacies model for meandering alluvial streams. In Fluvial Sedimentology, edited by
            Miall, A.D. Calgary: Can. Soc. Petrol. Geol. Mem. 5: 543-576. 
  
 Jackson
            II, R.G. 1976a. Depositional model of point bars in the lower Wabash River. Journal of Sedimentary Research 46(3):
            579-594. 
  
 Jackson
            II, R.G. 1976b. Largescale ripples of the lower Wabash. Sedimentology 23(5): 593-623. 
  
 Kamal
            Roslan, M. 1996. Taburan Formasi Semantan Semenanjung Malaysia. Sains Malaysiana 25(3): 91-114. 
  
 Khadkikar, A.S. 1999. Trough
            cross-bedded conglomerate facies. Sedimentology 128(102): 39-49.
  
           Khoo,
            H.P. 1977. The geology of the Sungai
              Tekai area. Geological Survey of
                Malaysia. Annual Report.
  
 Khoo,
            H.P. 1983. Mesozoic Stratigraphy in
              Peninsula Malaysia. In Proceedings of the Workshop on Stratigraphic Correlation of Thailand and
                Malaysia, 1: Technical Papers. Paper presented at the Geological Society of
            Thailand & Geological Society of Malaysia.
  
 Khor, W.C., Mohd Shafeea Leman,
            Muhammad Ashahadi Dzulkafli, Kamal Roslan Mohamed, Che Aziz Ali & Jasmi Ab
            Talib. 2017. Sedimentologi batuan enapan daratan Kumpulan Gagau (Usia Kapur
            Awal) di Hulu Sungai Chichir, Terengganu Darul Iman, Malaysia. Sains
              Malaysiana 46(12): 2315-2323.
  
           Korus,
            J.T., Gilmore, T.E., Waszgis, M.M. & Mittlestet, A.R. 2018. Unit-bar
            migration and bar-trough deposition: Impacts on hydraulic conductivity and
            grain size heterogeneity in a sandy streambed. Hydrogeology Journal 26(2): 553-564. 
  
 Kraus,
            M.J. & Wells, T.M. 1999. Facies and facies architecture of Paleocene
            floodplain deposits, Fort Union Formation, Bighorn Basin, Wyoming. Mountain Geologist 36(2): 57. 
  
 Lucas,
            S.G. & Krainer, K. 2013. The Pennsylvanian-Permian Bursum Formation in
            Central New Mexico. In The
              Carboniferous-Permian Transition in Central New Mexico, edited by Lucas,
            S.G., Nelson, W.J., DiMichele, W.A., Spielmann, J.A., Krainer, K., Barrick,
            J.E., Elrick, S. & Voigt, S. Albuquerque: IUGS. 59: 143-163. 
  
 McCarthy,
            P.J. & Plint, A.G. 1998. Recognition of interfluve sequence boundaries:
            Integrating paleopedology and sequence stratigraphy. Geology 26(5): 387-390.
  
 Miall,
            A.D. 2014. Fluvial Depositional System. Switzerland: Springer.
  
 Miall, A.D. 1996. The Geology of Fluvial Deposits. Berlin: Springer-Verlag.
            
           Miall,
            A.D. 1993. The architecture of fluvial-deltaic sequences in the Upper Mesaverde
            Group (Upper Cretaceous), Book Cliffs, Utah. Geological Society, London, Special Publications 75(1): 305-332. 
  
 Miall, A.D. 1988. Facies
            architecture in clastics sedimentary basins. In New Perspectives in Basin Analysis, edited by Kleinspehn, K.L.
  & Paola, C. New York: Springer-Verlag. pp. 67-82. 
  
 Miall,
            A.D. 1985. Architectural-elements analysis: A new method of facies analysis
            applied to fluvial deposits. Earth-Science
              Reviews (22): 261 -308.
  
           Mohamad
            Pauzi, A. 2013. Geologi dan Sumber
              Mineral Kawasan Maran, Pahang Darul Makmur. Kuala Lumpur: Jabatan Mineral
            dan Geosains Malaysia.
  
 Nichols,
            G.J. 2009. Sedimentology and Stratigraphy. United Kingdom: Willy-Blackwell.
  
 Plint,
            A.G. 1983. Sandy fluvial point bar sediments from the Middle Eocene of Dorset,
            England. In Modern and Ancient Fluvial
              System, edited by Collinson,
            J.D. & Lewin, J. Oxford: Blackwell Scientific. 6: 355-368.
  
 Reed,
            W.E. 1991. Genesis of Calcretes in the Devonian Wood Bay Group, Dicksonland,
            Spitsbergen. Sedimentary Geology 75(1): 149-161. 
  
 Roberts,
            E.M. 2007. Facies architecture and depositional environments of the Upper
            Cretaceous Kaiparowits Formation, southern Utah. Sedimentary Geology 197(3-4): 207-233.
  
 Rodrigues,
            S., Mosselman, E., Claude, N., Wintenberger, C.L. & Juge, P. 2015.
            Alternate bars in a sandy gravel bed river: Generation, migration and
            interactions with superimposed dunes. Earth
              Surface Processes and Landforms 40(5): 610-628. 
  
 Rush,
            B.R. & Jones, B.G. 1987. The Hawkesbury Sandstone south of Sydney,
            Australia; Triassic analogue for the deposit of a large, braided river. Journal of Sedimentary Research 57(2):
            222-233. 
  
 Schultz, A.W. 1984. Subaerial
            debris-flow deposition in the Upper Paleozoic Cutler Formation, Western
            Colorado. Journal of Sedimentary Petrology 54: 759-772.
  
           Scultz, M.R. & Hubbard, S.M.
            2005. Sedimentology, stratigraphic architecture, and ichnology of gravity-flow
            deposits partially poinded in a growth-fault-controlled slope minibasin, tres
            paso formation (Cretaceous), southern Chille. Journal of Sedimentary
              Research 75(3): 440-453.
  
           Siegenthaler, C. &
            Huggenberger, P. 1993. Pleistocene Rhine gravel: Deposits of a braided river
            system with dominant pool preservation. In Braided Rivers, edited by
            Best, C.L. & Bristow, C.S. London: Geological Society London. pp. 147-162.
  
           Simon,
            A.S. 1990. The sedimentology and accretionary styles of an ancient gravel-bed
            stream: The Budleigh Salterton Pebble Beds (Lower Triassic), southwest England. Sedimentary Geology 67(3-4): 199-219. 
  
 Singh,
            I.B. & Kumar, S. 1974. Mega- and giant ripples in the Ganga, Yamuna, and
            Son Rivers, Uttar Pradesh, India. Sedimentary
              Geology 12(1): 53-66. 
  
 Slingerland,
            R. & Smith, N.D. 2004. River avulsions and their deposits. Annual Reviews Earth Planet Science 32:
            257-285. 
  
 Smith,
            N. D. 1989. Anatomy of an avulsion. Sedimentology 36(1): 1-23. 
  
 Smith,
            N.D
            
            
            
            .
  & Perez-Arlucea, M. 1994. Fine-grained splay deposition in the avulsion
              belt of the lower Saskatchewan River, Canada. Journal of Sedimentary Research 64(2b): 159-168. 
  
 Tjia,
            H.D. 1996. Tectonics of deformed and undeformed Jurassic-Cretaceous strata of
            Peninsular Malaysia. Geological Society
              of Malaysia Bulletin 39: 131-156. 
  
 Todd,
            S.P. 1989. Stream-driven, high-density gravelly traction carpets: Possible
            deposits in the Trabeg Conglomerate Formation, SW Ireland and theoretical
            considerations of their origin. Sedimentology 36: 513-530. 
  
 Visher,
            G.S. 1972. Physical characteristics of fluvial deposits. In Recognition of Ancient Sedimentary
              Environments, edited by Rigby, J.K. & Hamblin, W.K. Dallas, Texas: SEPM
            Society for Sedimentary Geology. 16: 84-97.
  
 Willis,
            B.J. 1993. Ancient river systems in
              the Himalayan foredeep, Chinji Village area, northern Pakistan. Sedimentary Geology 88(1-2): 1-76. 
  
 Willis,
            B.J. & Behrensmeyer, A.K. 1995. Architecture of Miocene overbank deposits
            in northern Pakistan. Journal Sediment
              Research 65B(3): 403-407. 
  
 Zainey,
            K., Marahizal, M. & Uyob, S. 2007. Jurassic-Cretaceous continental deposits
            from Eastern Chenor, Pahang. Geological
              Society of Malaysia 35: 7-10. 
  
 
             
           *Pengarang untuk surat-menyurat; email: khorweichung@ums.edu.my
            
           
            
           
           
          
          
           
         
            
          
           
          
           
           |