Sains Malaysiana 52(11)(2023): 3293-3306
                
           
          http://doi.org/10.17576/jsm-2023-5211-20
            
           
          
             
           
          A Hybrid Approach for Accurate Forecasting of Exchange
            Rate Prices using VMD-CEEMDAN-GRU-ATCN Model
            
           
          (Pendekatan Hibrid untuk Ramalan Tepat Harga Kadar Pertukaran menggunakan Model
            VMD-CEEMDAN-GRU-ATCN)
            
           
          
             
           
          REHAN
            KAUSAR1, FARHAT IQBAL2,3,*, ABDUL RAZIQ2 & NAVEED SHEIKH4
  
 
          
             
           
          1Department of Statistics, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
            
           
          2Department of Statistics,
            University of Balochistan, Quetta, Pakistan
  
           
          3Department of Mathematics, Imam Abdulrahman Bin Faisal University, Saudi Arabia
            
           
          4Department of Mathematics,
            University of Balochistan, Quetta, Pakistan
  
           
          
             
           
          Diserahkan: 5 Mei 2023/Diterima: 23 Oktober 2023
            
           
          
             
           
          Abstract
            
           
          The
            foreign exchange (Forex) market has greatly influenced the global financial
            market. While Forex trading offers investors substantial yield prospects, some
            risks are also involved. It is challenging to accurately model financial time
            series due to their nonlinear, non-stationary and noisy properties with an
            uncertain and hidden relationship. Thus, developing extremely precise
            forecasting techniques is crucial for investors and decision-makers. This study
            introduces a novel hybrid forecasting model, VMD-CEEMDAN-GRU-ATCN, designed to
            improve Forex price prediction accuracy. To begin with, our proposed model
            utilizes the variational model decomposition (VMD)
            technique for breaking down raw prices into multiple sub-components and
            residual terms. The complete ensemble empirical mode decomposition with
            adaptive noise (CEEMDAN) technique is utilized to extract features from the
            residual terms, which involves further decomposition and analysis of these
            complex information-containing terms. These sub-components are then predicted
            by the gated recurrent unit (GRU) model. To enhance the effectiveness of our
            hybrid model, we include the open, high, low, and close prices and seven Forex market technical indicators. Finally, an attention-based
            temporal convolutional network (ATCN) model is used to obtain the Forex price
            forecasts. For both one-step and multi-step ahead forecasting, our proposed
            VMD-CEEMDAN-GRU-ATCN model has demonstrated superior and consistent performance
            in predicting USD/PKR exchange rate price series.
  
           
          
             
           
          Keywords:
            Attention mechanism; Forex; dual decomposition strategy; hybrid deep learning
            models; temporal convolutional network
            
           
          
            
           
          Abstrak
            
           
          Pasaran pertukaran asing (Forex) telah banyak mempengaruhi pasaran kewangan global. Walaupun perdagangan Forex menawarkan prospek hasil yang besar kepada pelabur, beberapa risiko turut terlibat. Adalah mencabar untuk memodelkan siri masa kewangan dengan tepat kerana sifatnya yang tidak linear, tidak pegun dan hingar dengan hubungan yang tidak pasti dan tersembunyi. Oleh itu, membangunkan teknik ramalan yang sangat tepat adalah penting untuk pelabur dan pembuat keputusan. Kajian ini memperkenalkan model ramalan hibrid baru, VMD-CEEMDAN-GRU-ATCN
            yang direka untuk meningkatkan ketepatan ramalan harga Forex. Sebagai permulaan, model cadangan kami menggunakan teknik penguraian model variasi (VMD) untuk memecahkan harga mentah kepada terma berbilang sub-komponen dan sisa. Teknik penguraian mod empirik ensembel lengkap dengan hingar suai (CEEMDAN) digunakan untuk mengekstrak ciri daripada terma sisa yang melibatkan penguraian dan analisis lanjut bagi terma yang mengandungi maklumat yang kompleks ini. Sub-komponen ini kemudiannya diramalkan oleh model unit berulang berpagar (GRU). Untuk meningkatkan keberkesanan model hibrid ini, kami memasukkan harga terbuka, tinggi, rendah dan tertutup serta tujuh penunjuk teknikal pasaran Forex. Akhir sekali, model rangkaian konvolusi temporal berasaskan perhatian (ATCN) digunakan untuk mendapatkan ramalan harga Forex. Untuk ramalan selangkah dan berbilang langkah ke hadapan, model cadangan VMD-CEEMDAN-GRU-ATCN telah menunjukkan prestasi unggul dan tekal dalam meramalkan siri harga pertukaran USD/PKR.
  
           
          
             
           
          Kata kunci: Forex; model pembelajaran mendalam hibrid; strategi penguraian dual; mekanisme perhatian; rangkaian konvolusi temporal
            
           
          
             
           
          RUJUKAN
            
           
          Aryal, S., Nadarajah,
            D., Kasthurirathna, D., Rupasinghe,
            L. & Jayawardena, C. 2019. Comparative analysis of the application of Deep
            Learning techniques for Forex Rate prediction. International Conference on
              Advancements in Computing (ICAC). pp. 329-333. https://doi.org/10.1109/ICAC49085.2019.9103428 
  
 
          Bai, S., Kolter, J.Z. & Koltun, V.
            2018. An empirical evaluation of generic convolutional and recurrent networks
            for sequence modeling. ArXiv Preprint ArXiv: 1803.01271.
  
           
                      https://doi.org/10.48550/arXiv.1803.01271
            
           
          Cheng,
            W., Wang, Y., Peng, Z., Ren, X., Shuai, Y., Zang, S., Liu, H., Cheng, H. & Wu, J. 2021.
            High-efficiency chaotic time series prediction based on time convolution neural
            network. Chaos, Solitons & Fractals 152: 111304.
            https://doi.org/10.1016/j.chaos.2021.111304 
  
 
          Cao, J.,
            Li, Z. & Li, J. 2019. Financial time series forecasting model based on
            CEEMDAN and LSTM. Physica A:
              Statistical Mechanics and its Applications 519: 127-139.
            https://doi.org/10.1016/j.physa.2018.11.061
  
 
          Das,
            S.R., Mishra, D. & Rout, M. 2019. A hybridized ELM using self-adaptive
            multi-population-based Jaya algorithm for currency exchange prediction: An
            empirical assessment. Neural Computing and Applications 31(11):
            7071-7094. https://doi.org/10.1007/s00521-018-3552-8
  
 
          Deng, T.,
            He, X. & Zeng, Z. 2018. Recurrent neural network for combined economic and
            emission dispatch. Applied Intelligence 48: 2180-2198.
            https://doi.org/10.1007/s10489-017-1072-3 
  
           
          Diebold,
            F.X. & Mariano, R.S. 2002.
              Comparing predictive accuracy. Journal of Business & Economic Statistics 20(1): 134-144. https://doi.org/10.1198/073500102753410444 
  
 
          Dragomiretskiy, K. & Zosso,
            D. 2013. Variational mode decomposition. IEEE
              Transactions on Signal Processing 62(3): 531-544.
            https://doi.org10.1109/TSP.2013.2288675 
  
 
          Fan, J.,
            Zhang, K., Zhu, Y. & Chen, B. 2021. Parallel spatio-temporal
            attention-based TCN for multivariate time series prediction. Neural
              Computing and Applications 35: 13109-13118. https://doi.org/10.1007/s00521-021-05958-z
  
 
          Guo, H., Zhang, D., Liu, S., Wang, L.
  & Ding, Y. 2021. Bitcoin price forecasting: A perspective of underlying blockchain transactions. Decision Support Systems 151: 113650. https://doi.org/10.1016/j.dss.2021.113650
  
 
          Hu,
            Z., Zhao, Y. & Khushi,
              M. 2021. A survey of Forex and stock price prediction using deep
              learning. Applied System Innovation 4(1): 9. https://doi.org/10.3390/asi4010009  
  
 
          Hua, Y.
  & Zehao, C. 2020. Short-term traffic flow
            prediction based on temporal convolutional networks. Journal of South China
              University of Technology (Natural Science Edition) 48: 8. https://doi.org/10.1109/ITSC48978.2021.9564803
  
 
          Jun, W., Lingyu, T., Yuyan, L. & Peng,
            G. 2017. A weighted EMD-based prediction model  based on TOPSIS and feed forward
            neural network for noised timeseries. Knowledge-Based
              Systems 132: 167-178. https://doi.org/10.1016/j.knosys.2017.06.022
  
 
          
          Karevan, Z. & Suykens,
            J.A.K. 2020. Transductive LSTM for time-series
            prediction: An application to weather forecasting. Neural Networks 125:
            1-9. https://doi.org/10.1016/j.neunet.2019.12.030 
  
 
          Long, J., Shelhamer, E. & Darrell, T. 2015. Fully
            convolutional networks for semantic segmentation. Proceedings of the IEEE
              Conference on Computer Vision and Pattern Recognition. pp. 3431-3440.
            https://doi.org/10.1109/CVPR.2015.7298965 
  
 
          Loureiro, A.L., Miguéis,
            V.L. & da Silva, L.F. 2018. Exploring the use of deep neural networks for
            sales forecasting in fashion retail. Decision Support Systems 114:
            81-93. https://doi.org/10.1016/j.dss.2018.08.010
  
           
          Peng, Z.,
            Peng, S., Fu, L., Lu, B., Tang, J., Wang, K. & Li, W. 2020. A novel deep
            learning ensemble model with data denoising for
            short-term wind speed forecasting. Energy Conversion and Management 207:
            112524. https://doi.org/10.1016/j.enconman.2019.112524 
  
           
          Torres,
            M.E., Colominas, M.A., Schlotthauer,
            G. & Flandrin, P. 2011. A complete ensemble
            empirical mode decomposition with adaptive noise. IEEE International
              Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.
            4144-4147.  https://doi.org/10.1109/ICASSP.2011.5947265
  
 
          Ulina, M., Purba,
            R. & Halim, A. 2020. Foreign exchange prediction using CEEMDAN and improved
            FA-LSTM. Fifth International Conference on Informatics and Computing (ICIC).
            pp. 1-6. https://doi.org/10.1109/ICIC50835.2020.9288615
  
 
          Wei, Y.,
            Sun, S., Ma, J., Wang, S. & Lai, K.K. 2019. A decomposition clustering
            ensemble learning approach for forecasting foreign exchange rates. Journal
              of Management Science and Engineering 4(1): 45-54. https://doi.org/10.1016/j.jmse.2019.02.001 
  
 
          Yang, W.,
            Wang, J., Niu, T. & Du, P. 2019. A hybrid
            forecasting system based on a dual decomposition strategy and multi-objective
            optimization for electricity price forecasting. Applied Energy 235:
            1205-1225. https://doi.org/10.1016/j.apenergy.2018.11.034
  
 
          Yasir, M., Durrani,
            M.Y., Afzal, S., Maqsood, M., Aadil,
            F., Mehmood, I. & Rho, S. 2019. An intelligent
            event-sentiment-based daily foreign exchange rate forecasting system. Applied
              Sciences 9(15): 2980. https://doi.org/10.3390/app9152980
  
 
           Yildirim, D.C., Toroslu, I.H. & Fiore, U. 2021. Forecasting directional
            movement of Forex data using LSTM with technical and macroeconomic indicators. Financial
              Innovation 7(1): 1-36. https://doi.org/10.1186/s40854-020-00220-2
  
 
          Yujia, Z., Zhicheng,
            D., Songwei, G. & Jirong,
            W. 2020. Dynamic personalized search based on RNN with attention mechanism. Chinese
              Journal of Computers 43: 812-826.  https://doi.org/10.11897/SP.J.1016.2020.00812
  
 
          Zhang,
            C., Pan, H., Ma, Y. & Huang, X. 2019. Analysis of Asia Pacific stock
            markets with a novel multiscale model. Physica A: Statistical Mechanics and its Applications 534: 120939.
            https://doi.org/10.1016/j.physa.2019.04.175
  
 
          Zhang,
            T., Tang, Z., Wu, J., Du, X. & Chen, K. 2021. Multi-step-ahead crude oil
            price forecasting based on two-layer decomposition technique and extreme
            learning machine optimized by the particle swarm optimization algorithm. Energy 229:
            120797. https://doi.org/10.1016/j.energy.2021.120797 
  
 
          Zhen, Y., Fang, J., Zhao, X., Ge, J.
  & Xiao, Y. 2022. Temporal convolution network based on attention mechanism
            for well production prediction. Journal of Petroleum Science and
              Engineering 218: 111043.
                https://doi.org/10.1016/j.petrol.2022.111043 
  
 
          Zhou, J. & Wang, S. 2021. A carbon price prediction model
            based on the secondary decomposition algorithm and influencing factors. Energies 14(5):
            1328.  https://doi.org/10.3390/en14051328
  
 
          
             
           
          *Pengarang untuk surat-menyurat; email: Farhat.iqbal@um.uob.edu.pk
            
           
          
             
           
  
            
   
         
   
       
  
   
         
          
             
           
   
     
   
         
   
         
  
          
             
           
   
         
  
          
 
            
            
            
            
            
          
          
          
           
          
         
          
            
          
           
          
           
            |