| Sains Malaysiana 52(5)(2023):
                
          1345-1358 http://doi.org/10.17576/jsm-2023-5205-02
            
         
             
           Keupayaan Aplikasi Indeks Spektrum dalam Penentuan Perubahan Pantai (Applicability of Spectral Indices in Determination of Coastal Changes)
            
           
             
           SARAVANAKKUMAR
            NACHIMUTHU & MUZZNEENA AHMAD MUSTAPHA*
  
           
             
           Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
            Selangor Darul Ehsan, Malaysia
  
           
             
           Diserahkan: 17 Jun
            2022/Diterima: 5 Mei 2023
            
           
             
            Abstrak
              
          Pantai penting dalam
            menyediakan pelbagai perkhidmatan ekosistem. Garis pantai berubah secara
            dinamik dan analisis perubahan garis pantai berupaya dilakukan oleh teknologi
            penderiaan jauh dan GIS. Tujuan kajian ini adalah mengukur keupayaan indeks
            spektrum seperti Modified Normalized Difference Water Index (MNDWI), Normalized
              Difference Vegetation Index (NDVI) dan Soil Adjusted Vegetation Index (SAVI) dalam membezakan litupan tanah serta penentuan perubahan garis pantai di
            pantai barat, Johor antara tahun 2000 dan 2020. Penyelidikan ini dijalankan
            dengan analisis data imej satelit Landsat 7 ETM+ (2000) dan Landsat 8 OLI/TIRS
            (2020) menggunakan perisian ERDAS dan ArcGIS. Imej indeks spektrum dijana bagi
            penentuan garis pantai melalui pengelasan OTSU. Tindan lapis imej dibuat bagi
            menentukan perubahan garis pantai. Penggunaan indeks spektrum dalam kajian ini
            menunjukkan bahawa ketiga-tiga indeks spektrum tersebut mampu membezakan air
            dan darat dengan berkesan di sepanjang pantai barat Johor. MNDWI didapati mempunyai
            ketepatan keseluruhan 99.00% (2000) dan 97.50% (2020) dan nilai Kappa yang
            paling tinggi bagi kedua-dua imej satelit Landsat, 0.98 (2000) dan 0.95
            (2020).  Indeks NDVI dan SAVI mempunyai
            ketepatan yang sama iaitu 95.00% (2000) dan 96.50% (2020) dan nilai Kappa sama
            sebanyak 0.90 (2000) dan 0.93 (2020).  Pantai barat, Johor telah mengalami pengurangan pantai sebanyak 583.48
            hektar dan penambahan 846.85 hektar. Pengurangan yang lebih tinggi diperhatikan
            di sepanjang pantai Batu Pahat dan Pontian manakala garis pantai di pantai
            utara Pontian menunjukkan jumlah penambahan yang sangat tinggi. Kajian ini
            dapat memanfaatkan pihak berkepentingan dengan memberi status perubahan garis
            pantai terkini untuk mengambil langkah yang berkesan bagi pembangunan dan pengurusan
            pantai.
            
           
             
           Kata kunci: Indeks spektrum; Landsat; pantai barat Johor; perubahan garis pantai
            
           
             
         Abstract
            
          Coast is
            essential in providing wide range of ecosystem services. Shorelines change
            dynamically, and analysing shoreline changes can be conducted with Remote
            sensing and GIS technologies. This study aims to measure applicability of
            spectral indices of Modified Normalized Difference Water Index (MNDWI),
            Normalised Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation
            Index (SAVI) to distinguish land cover classes and determine coastline changes
            on west coast of Johor between 2000 and 2020. This study analysed satellite
            image data obtained from Landsat 7 ETM+ (2000) and Landsat 8 OLI/TIRS (2020)
            using ERDAS and ArcGIS software. Spectral index images were generated for
            shoreline determination through OTSU classification. Image overlays are created
            to determine shoreline changes. The use of spectral indices showed that the
            three spectral indexes could effectively distinguish water and land along west
            coast of Johor. MNDWI had an overall accuracy of 99.00% (2000) and 97.50%
            (2020) and highest Kappa value for both Landsat satellite images, 0.98 (2000)
            and 0.95 (2020). The NDVI and SAVI indices have the same accuracy of 95.00%
            (2000) and 96.50% (2020) and Kappa value of 0.90 (2000) and 0.93 (2020). The
            west coast of Johor has experienced a reduction of 583.48 hectares of coastline
            and accretion of 846.85 hectares. Higher reduction was observed along Batu Pahat and Pontian coasts,
            while the shoreline on the north shore of Pontian showed a very high amount of
            accretion. This study can benefit stakeholders by giving the status of the
            latest coastline changes in implementing effective coastal development and
            management measures.
  
           
             
           Keywords: Landsat; shoreline change; spectral index; west coast Johor
            
           
             
           RUJUKAN
            
           Acharya, T.D., Subedi, A. & Lee, D.H. 2018.
            Evaluation of water indices for surface water extraction in a Landsat 8 scene
            of Nepal. Sensors 18(8): 1-15.
  
           Adamu,
            B., Tansey, K. & Ogutu, B. 2018. Remote sensing
            for detection and monitoring of vegetation affected by oil spills. International
              Journal of Remote Sensing 39(11): 3628-3645.
  
           Azlan,
            N.I. & Othman, R. 2009. Monitoring of mangrove area using remote sensing
            toward shoreline protection. GIS Ostrava 1: 25-28.
            http://gisak.vsb.cz/GIS_Ostrava/GIS_Ova_2009/sbornik/Lists/Papers/102.pdf
  
           Duru,
            U. 2017. Shoreline change assessment using multi-temporal satellite images: A
            case study of Lake Sapanca, Nw Turkey. Environmental Monitoring and Assessment 189(8): 1-14.
  
           Ehsan,
            S., Ara Begum, R., Ghani Md Nor, N. & Nizam Abdul Maulud, K. 2019. Current and potential impacts of sea level
            rise in the coastal areas of Malaysia. IOP Conference Series: Earth and
              Environmental Science. hlm. 1-11.
  
           Hamdi, A.E., Maryati, M. & Shafiq Hamdin, M. 2019.
            The potential of nature tourism at Muar and Tangkak Districts, Johor, Malaysia. IOP Conference Series: Earth and Environmental Science. hlm. 1-12.
  
           Hamzah, M.L., Amir, A.A., Maulud, K.N.A., Sharma, S., Mohd,
            F.A., Selamat, S.N., Karim, O., Ariffin, E.H. & Begum, R.A. 2020.
            Assessment of the mangrove forest changes along the Pahang Coast using remote
            sensing and GIS technology. Journal of Sustainability Science and Management 15(5): 43-58.
  
           Hassan, M.I. & Rahmat, N.H. 2016. The effect of
            coastline changes to local community’s social-economic. ISPRS -
              International Archives of the Photogrammetry, Remote Sensing and Spatial
              Information Sciences XLII-4/W1. pp. 25-36.
  
           Huete, A.R. 1988. A soil-adjusted vegetation index (Savi). Remote
            Sensing of Environment 25(3): 295-309.
  
           Kumar, M. 1988. World Geodetic System 1984: A modern
            and accurate global reference frame. Marine Geodesy 12(2): 117-126.
  
           Lechner, A.M., Foody, G.M. & Boyd, D.S. 2020.
            Applications in remote sensing to forest ecology and management. One Earth 2(5): 405-412.
  
           Li,
            W., El-Askary, H., Qurban,
            M.A., Li, J., ManiKandan, K.P. & Piechota, T. 2019. Using multi-indices approach to quantify
            mangrove changes over the western Arabian Gulf along Saudi Arabia coast. Ecological
              Indicators 102: 734-745.
  
           Lynch, P., Blesius, L. & Hines, E. 2020.
            Classification of urban area using multispectral indices for urban planning. Remote
              Sensing 12(15): 2503.
  
           Malaysia,
            S.A. 2020. Impacts of Coastal Reclamation in Malaysia. Pulau Pinang: SAM’s Publication.
  
           Maulud, K.N.A. & Rafar, R.M. 2015. Determination
            the impact of sea level rise to shoreline changes using GIS. International
              Conference on Space Science and Communication, IconSpace. hlm. 352-357.
  
           McFeeters,
            S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the
            delineation of open water features. International Journal of Remote Sensing 17(7): 1425-1432.
  
           McHugh, M.L. 2012. Interrater reliability: The Kappa
            statistic. Biochemia Medica 22(3): 276-282.
  
           Mohd Razali, S., Nuruddin, A.A. & Kamarudin, N.
            2020. Mapping mangrove density for conservation of the Ramsar Site in
            Peninsular Malaysia. International Journal of Conservation Science 11(1):
            153-164.
  
           Mustafa, M.T., Hassoon, K.I., Hussain, H.M. & Abd, M.H.
            2017. Using water indices (NDWI, MNDWI, NDMI, WRI and AWEI) to detect physical
            and chemical parameters by apply remote sensing and GIS techniques. International
              Journal of Research-Granthaalayah 5(10): 117-128.
  
           Omar, H., Misman, M.A. & Musa, S. 2019. GIS and
            remote sensing for mangroves mapping and monitoring. In Geographic
              Information Systems and Science,disunting oleh Rocha, J. & Abrantes, P. IntechOpen.
                https://doi.org/10.5772/intechopen.75243
  
 Otsu, N. 1979. A threshold selection method from
            gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.
  
           Patel,
            A.K., Ghosh, J.K. & Sayyad, S.U. 2020. Fractional abundances study of
            macronutrients in soil using hyperspectral remote sensing. Geocarto International 37(2): 474-493.
  
           Paul,
            E.A. 2016. The nature and dynamics of soil organic matter: Plant inputs,
            microbial transformations, and organic matter stabilization. Soil Biology
              and Biochemistry 98: 109-126.
  
           Rhyma, P.P., Norizah, K., Hamdan, O., Faridah-Hanum,
            I. & Zulfa, A.W. 2020. Integration of normalised different vegetation index
            and soil-adjusted vegetation index for mangrove vegetation delineation. Remote
              Sensing Applications: Society and Environment 17: 1-14.
  
           Rondeaux,
            G., Steven, M. & Baret, F. 1996. Optimization of
            soil-adjusted vegetation indices. Remote Sensing of Environment 55(2):
            95-107.
  
           Samanta, S. & Paul, S.K. 2016. Geospatial analysis
            of shoreline and land use/land cover changes through remote sensing and GIS
            techniques. Modeling Earth Systems and Environment 2(3): 1-8.
  
           Sany,
            S.B.T., Tajfard, M., Rezayi,
            M., Rahman, M.A. & Hashim, R. 2019. The west
            coast of Peninsular Malaysia. Dlm. World Seas: An
              Environmental Evaluation, disunting oleh Sheppard, C. United Kingdom: Elsevier. hlm. 437-458.
  
           Sarmin,
            N., Hasmadi, I.M., Pakhriazad,
            H. & Khairil, W. 2016. The DPSIR framework for
            causes analysis of mangrove deforestation in Johor, Malaysia. Environmental
              Nanotechnology, Monitoring & Management 6: 214-218.
  
           Sun,
            F., Sun, W., Chen, J. & Gong, P. 2012. Comparison and improvement of
            methods for identifying waterbodies in remotely sensed imagery. International
              Journal of Remote Sensing 33(21): 6854-6875.
  
           Szabó, S., Gácsi, Z. & Balázs, B. 2016. Specific
            features of NDVI, NDWI AND MNDWI as reflected in land cover categories. Landscape
  & Environment 10(3-4): 194-202.
  
           Toure, S., Diop, O., Kpalma, K. & Maiga, A.S.
            2019. Shoreline detection using optical remote sensing: A review. ISPRS
              International Journal of Geo-Information 8(2): 1-21.
  
           U.S. Geological Survey. 2021. URL
            https://waterdata.usgs.gov/nwis/.
            
           Wicaksono, A. & Wicaksono, P. 2019. Geometric
            accuracy assessment for shoreline derived from NDWI, MNDWI, and AWEI
            transformation on various coastal physical typology in jepara regency using
            Landsat 8 OLI imagery in 2018. Geo-planning Journal of Geomatics and
              Planning 6(1): 55-72.
  
           Xu, H. 2006. Modification of Normalised Difference Water
            Index (NDWI) to enhance open water features in remotely sensed imagery. International
              Journal of Remote Sensing 27(14): 3025-3033.
  
           Xu, N. 2018. Detecting coastline change with all available
            landsat data over 1986-2015: A case study for the state of Texas, USA. Atmosphere 9(3): 1-20.
  
           Yatim, M.H., Norazlimi, N.A. & Abdul-Latiff,
            M.A.B. 2019. Avifauna study of Tanjung Piai, Johor, Malaysia. IOP Conference
              Series: Earth and Environmental Science, hlm. 1-7.
  
           Yunus, M.Z.M., Omar, C.M. & Ismail, Z. 2016.
            GIS-based assessment of mangrove response to shoreline change along the coast
            of Kukup Island, Johor. ARPN Journal of Engineering and Applied Sciences 11(6): 3747-3754.
  
           
             
           *Pengarang untuk surat-menyurat; email: muzz@ukm.edu.my 
         
          
          
           
         
            
          
           
          
           
           |