| Sains Malaysiana 52(5)(2023):
          
        1567-1579 http://doi.org/10.17576/jsm-2023-5205-18
            
           
             
           Fabrication of
            Aromatic Polyimide Films Derived from Diisocyanate with Fluorinated Dianhydride
            
           (Pembuatan Filem Polimida Aromatik Terhasil daripada Diisosianat dengan
            Dianhidrida Berfluorinat)
  
 
             
           NAJAA MUSTAFFA1, TATSUO KANEKO2,
            KENJI TAKADA2, SUMANT DWIVEDI3 & NADHRATUN NAIIM
            MOBARAK1,*
  
           
             
           1Department of Chemical Sciences, Faculty of Science and
            Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
            Ehsan, Malaysia
            
           2Energy and Environment Area, Graduate School of Advanced Science
            and Technology, Japan Advanced Institute of Science and Technology, 1-1
            Asahidai, Nomi, Ishikawa 923-1292, Japan3Department of
    Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
 
             
           Diterima:
            27 Disember 2022/Diserahkan: 5 April 2023
            
           
             
           Abstract
            
           The range of available structure combinations to
            synthesize polyimide (PI) makes it technically possible to have various
            universal methods of producing PI film. The molecular
              design, in which monomers used to synthesize PI are carefully selected to meet
              specific application requirements as it influenced the properties of PI films.
              This study aimed to outline the approach for film fabrication through
            the casting of highly organo-soluble polyimide derived from 4,4’-methylene
            diphenyl diisocyanate (MDI) with 4,4’-(hexafluoroisopropylidene) diphtalic
            anhydride (6FDA) in different heating treatments. The solution drop amount was
            tested in order to control the films colour uniformity. A flexible and less
              crystalline MDI-6FDA film with an average thickness of 93 𝜇m was successfully developed
                with a tensile strength of up to 57 MPa and an elongation at break of 5%. The
                resulting MDI-6FDA film also demonstrated good optical transparency (T500 =
                69%) with a cut-off wavelength at 371 nm and high
                  thermal resistance (T5 = 574 ℃) with a Tg temperature of up to 238 ℃. The
                    obtained film also shows good chemical resistance in methanol, ethanol,
                    isopropanol, and tetrahydrofuran solvents. These outcomes serve as a guideline for the fabrication of polyimide
                      films specifically derived from diisocyanate and dianhydride, with the
                      potential advantages to be used in optical applications.
  
 
             
           Keywords: Diisocyanate; flexible films; optical transparency; polyimide;
            tensile strength
  
           
             
           Abstrak
            
           Kepelbagaian
            gabungan struktur yang tersedia untuk mensintesis poliimida secara teknikalnya
            telah mewujudkan kaedah yang pelbagai untuk menghasilkan filem PI. Reka bentuk
            molekul yang melibatkan pemilihan monomer yang digunakan dalam penyediaan PI
            dipilih dengan teliti, bagi memenuhi keperluan aplikasi tertentu kerana ia
            boleh mempengaruhi sifat filem PI. Kajian ini bertujuan untuk menggariskan
            pendekatan bagi fabrikasi filem melalui penuangan poliimida organo-larut yang
            diperoleh daripada 4,4'-metilena difenil diisosianat (MDI) dengan
            4,4'-(heksafluoroisopropilidena) diftalik anhidrida (6FDA) dalam rawatan
            pemanasan berbeza. Jumlah titisan larutan telah diuji bagi mengawal keseragaman
            warna filem. Filem MDI-6FDA yang fleksibel dan kurang hablur dengan purata
            ketebalan 93 𝜇m berjaya
              dibangunkan dengan kekuatan tegangan sehingga 57 MPa dan pemanjangan memutus
              pada 5%. Filem MDI-6FDA yang terhasil juga menunjukkan kelutsinaran optik yang
              baik (T500 = 69%) dengan panjang gelombang terpenggal pada 371 nm
              dan ketahanan terma yang tinggi (T5= 574 ℃) dengan suhu Tg sehingga 238 ℃. Filem yang dihasilkan juga
              menunjukkan ketahanan kimia yang baik dalam pelarut metanol, etanol,
              isopropanol dan tetrahidrofuran. Keputusan ini berfungsi sebagai garis panduan
              dalam fabrikasi filem poliimida khususnya daripada diisosianat dan dianhidrida
              dengan kelebihan potensi untuk digunakan di dalam aplikasi optik.
  
 
             
           Kata kunci: Diisosianat; filem fleksibel; kekuatan tegangan; kelutsinaran
            cahaya; poliimida
            
           
             
           RUJUKAN
            
           Alvino,
            W.M. & Edelman, L.E. 1978. Polyimides from diisocyanates, dianhydrides, and
            their dialkyl esters. Journal of Applied Polymer Science 22(7):
            1983-1990.
  
           Amutha,
            N., Tharakan, S.A. & Sarojadevi, M. 2015. Synthesis and characterization of
            new soluble polyimides based on pyridine unit with flexible linkages. High
              Performance Polymers 27(8): 979-989.
  
           An,
            H., Xue, B., Li, D., Li, H., Meng, Q., Guo, L. & Chen, L. 2006.
            Environmentally friendly LiI/ethanol based gel electrolyte for dye-sensitized
            solar cells. Electrochemistry Communications 8(1): 170-172.
  
           Ando,
            S., Matsuura, T. & Sasaki, S. 1997. Coloration of aromatic polyimides and
            electronic properties of their source materials. Polymer Journal 29(1):
            69-76.
  
           Barsema,
            J.N., Klijnstra, S.D., Balster, J.H., Van der vegt, N.F.A., Koops, G.H. &
            Wessling, M. 2004. Intermediate polymer to carbon gas separation membranes
            based on Matrimid PI. Journal of Membrane Science 238(1-2): 93-102.
  
           Cao,
            L., Zhang, M., Niu, H., Chang, J., Liu, W., Yang, H., Cao, W. & Wu, D. 2016.
            Structural relationship between random copolyimides and their carbon fibers. Journal
              of Materials Science 52(4): 1883-1897.
  
           Deng,
            B., Zhang, S., Liu, C., Li, W., Zhang, X., Wei, H. & Gong, C. 2018.
            Synthesis and properties of soluble aromatic polyimides from novel
            4,5-diazafluorene-containing dianhydride. RSC Advances 8(1): 194-205.
  
           Ghosh,
            A., Mistri, E.A. & Banerjee, S. 2015. Fluorinated polyimides: Synthesis,
            properties, and applications. Handbook of Specialty Fluorinated Polymers.
            pp. 97-185.
  
           Hasegawa,
            M., Fujii, M. & Wada, Y. 2018. Approaches to improve the film ductility of
            colorless cycloaliphatic polyimides. Polymers for Advanced Technologies 29(2): 921-933.
  
           Hasegawa,
            M. & Horie, K. 2001. Photophysics, photochemistry, and optical properties
            of polyimides. Progress in Polymer Science 26(2): 259-335.
  
           Hsiao,
            S.H. & Chen, Y.J. 2002. Structure–property study of polyimides derived from
            PMDA and BPDA dianhydrides with structurally different diamines. European
              Polymer Journal 38(4): 815-828.
  
           Hsiao,
            S.H. & Lin, K.H. 2005. Polyimides derived from novel asymmetric ether
            diamine. Journal of Polymer Science Part A: Polymer Chemistry 43(2):
            331-341.
  
           Hu,
            M., Chen, H., Wang, M., Liu, G., Chen, C., Qian, G. & Yu, Y. 2021. Novel
            low‐dielectric constant and soluble polyimides from diamines containing
            fluorene and pyridine unit. Journal of Polymer Science 59(4): 329-339.
  
           Huang,
            X., Li, H., Liu, C. & Wei, C. 2019. Design and synthesis of high
            heat-resistant, soluble, and hydrophobic fluorinated polyimides containing pyridine
            and trifluoromethylthiophenyl units. High Performance Polymers 31(1):
            107-115.
  
           Huang,
            X., Chen, B., Mei, M., Li, H., Liu, C. & Wei, C. 2017. Synthesis and
            characterization of organosoluble, thermal stable and hydrophobic polyimides
            derived from 4-(4-(1-pyrrolidinyl)phenyl)-2,6-bis(4-(4-aminophenoxy)phenyl)pyridine. Polymers 9(10): 1-13.
  
           Huo,
            H., Mo, S., Sun, H., Yang, S. & Fan, L. 2012. Preparation and properties of
            molecular-weight-controlled polyimide adhesive film. e-Polymers 12(1):
            1-18.
  
           Hyde,
            L.J. & Smith, R.M. 1995. Bearing-grade thermoplastic polyimides in
            automotive tribological applications. (No. 950190) SAE Technical Paper pp. 1-11.
  
           Jang,
            W., Shin, D., Choi, S., Park, S. & Han, H. 2007. Effects of internal
            linkage groups of fluorinated diamine on the optical and dielectric properties
            of polyimide thin films. Polymer 48(7): 2130-2143.
  
           Jiang,
            H., Zhang, M. & Adhikari, B. 2013. Fruit and vegetable powders. Handbook
              of Food Powders. Elsevier. pp. 532-552.
  
           Kaba,
            M., Romero, R.E., Essamri, A. & Mas, A. 2005. Synthesis and
            characterization of fluorinated copolyetherimides with CH2C6F13 side chains based on the ULTEMTM structure. Journal of Fluorine
              Chemistry 126(11-12): 1476-1486.
  
           Kambezidis,
            H.D. 2012. The solar resource. Comprehensive Renewable Energy 3: 27-84.
  
           Li,
            T.L. & Hsu, S.L.C. 2007. Preparation and properties of a high temperature,
            flexible and colorless ITO coated polyimide substrate. European Polymer
              Journal 43(8): 3368-3373.
  
           Liaw,
            D.J., Huang, C.C. & Chen, W.H. 2006. Color lightness and highly
            organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based
            on noncoplanar 2,2′-dimethyl-4,4′-biphenylene units. Polymer 47(7): 2337-2348.
  
           Liaw,
            D.J., Wang, K.L., Huang, Y.C., Lee, K.R., Lai, J.Y. & Ha, C.S. 2012.
            Advanced polyimide materials: Syntheses, physical properties and applications. Progress
              in Polymer Science 37(7): 907-974.
  
           Lim,
            C.Y., Park, J.K., Kim, Y.H. & Han, J.I. 2012. Mechanical and electrical
            stability indium-tin-oxide coated polymer substrates under continuous bending
            stress condition. Journal of International Council on Electrical Engineering 2(3): 237-241.
  
           Liu,
            J., Zhang, Q., Xia, Q., Dong, J. & Xu, Q. 2012. Synthesis, characterization
            and properties of polyimides derived from a symmetrical diamine containing
            bis-benzimidazole rings. Polymer Degradation and Stability 97(6):
            987-994.
  
           Mustaffa,
            N., Kaneko, T., Takada, K., Dwivedi, S., Su’ait, M.S. & Mobarak, N.N. 2022.
            Synthesis and characterization of polyimides from diisocyanate with enhanced
            solubility and thermostability properties via direct low-temperature one-step
            polymerization in NMP solvent. Polymer Bulletin. pp. 1-17.
  
           Ngamwonglumlert,
            L. & Devahastin, S. 2018. Microstructure and its relationship with quality
            and storage stability of dried foods. Food Microstructure and Its
              Relationship with Quality and Stability. Elsevier. pp. 139-159.
  
           Peng,
            Y.Y., Dussan, D.D. & Narain, R. 2020. Thermal, mechanical, and electrical
            properties. Polymer Science and Nanotechnology. Elsevier. pp. 179-201.
  
           Punathil,
            L. & Basak, T. 2016. Microwave processing of frozen and packaged food
            materials: Experimental. Reference Module in Food Science. Elsevier. pp.
            1-28.
  
           Qu,
            W., Ko, T.M., Vora, R.H. & Chung, T.S. 2001. Effect of polyimides with
            different ratios of para - to meta - analogous fluorinated diamines on
            relaxation process. Polymer 42(15): 6393-6401.
  
           Reis,
            F.R. 2014. Introduction to low pressure processes. In Vacuum Drying for Extending Food Shelf-Life, edited by Reis, F.R.
            Springer. pp. 1-6.
  
           Sadavarte,
            N.V., Halhalli, M.R., Avadhani, C.V. & Wadgaonkar, P.P. 2009. Synthesis and
            characterization of new polyimides containing pendent pentadecyl chains. European
              Polymer Journal 45(2): 582-589.
  
           Shen,
            Y., Feng, Z. & Zhang, H. 2020. Study of indium tin oxide films deposited on
            colorless polyimide film by magnetron sputtering. Materials & Design 193: 1-7.
  
           Shrivastava,
            A. 2018. Introduction to Plastics
              Engineering. Elsevier. pp. 1-16.
  
           St
            Clair, A.K., St Clair, T.L. & Shevket, K.I. 1984. Synthesis and characterization
            of essentially colorless polyimide films. Journal of Polymer Material
              Science Engineering 51: 62-66.
  
           Takekoshi,
            T. 1996. Synthesis of polyimides. In Polyimides: Fundamentals and
              Applications, edited by Ghosh, M. Boca Raton: CRC Press: pp. 7-48.
  
           Tan,
            P.C., Ooi, B.S., Ahmad, A.L. & Low, S.C. 2017. Correlating the synthesis
            protocol of aromatic polyimide film with the properties of polyamic acid
            precursor. IOP Conference Series: Materials Science and Engineering 206:
            1-11.
  
           Tapaswi,
            P.K. & Ha, C.S. 2019. Recent trends on transparent colorless polyimides
            with balanced thermal and optical properties: Design and synthesis. Macromolecular
              Chemistry and Physics 220(3): 1-33.
  
           Thiruvasagam,
            P., Saritha, B. & Hari, N. 2016. Poly(ether–imide)s with flexible linkages
            and kinks: Synthesis, processability, thermal stability, and dielectric
            studies. High Performance Polymers 28(6): 660-668.
  
           Vivod,
            S.L., Meador, M.A.B., Pugh, C., Wilkosz, M., Calomino, K. & McCorkle, L.
            2020. Toward improved optical transparency of polyimide aerogels. ACS
              Applied Materials & Interfaces 12(7): 8622-8633.
  
           Wu,
            H.W., Li, H. & Liu, H.Z. 2012. Synthesis and properties of a
            high-molecular-weight polyimide based on 4, 4’-(hexafluoroisopropylidene)
            diphthalic anhydride. Advanced Materials Research 550-553: 742-746.
  
           Xue,
            B.F., Wang, H.X., Hu, Y.S., Li, H., Wang, Z.X., Meng, Q.B., Huang, X.J., Sato,
            O., Chen, L.Q. & Fujishima, A. 2004. An alternative ionic liquid based
            electrolyte for dye-sensitized solar cells. Photochemical & Photobiological
              Sciences 3(10): 918-919.
  
           Yi,
            C., Li, W., Shi, S., He, K., Ma, P., Chen, M. & Yang, C. 2020.
            High-temperature-resistant and colorless polyimide: Preparations, properties,
            and applications. Solar Energy 195: 340-354.
  
           
             
           *Pengarang untuk surat-menyuratemail:
            nadhratunnaiim@ukm.edu.my   
         
          
          
           
         
            
          
           
          
           
           |