| Sains Malaysiana 52(6)(2023): 1759-1770
          
         http://doi.org/10.17576/jsm-2023-5206-12
            
           
             
           Methods of Evaluating Adaptation and
            Accuracy of Additive Manufactured Removable Partial Dentures: A
              Scoping Review
                
               (Kaedah Menilai Penyesuaian dan Ketepatan Penghasilan Aditif Gigi Palsu Sebahagian Boleh Tanggal: Suatu Kajian Mengskop)
            
           
             
           SAFA ELHADERY1,
            NORLELA YACOB2, SYARIDA HASNUR SAFII1, NORLIZA IBRAHIM3, ZUBAIDAH ZANUL ABIDIN1 &
              NOSIZANA MOHD SALLEH1*
              
              
                
               
             
           1Department of Restorative Dentistry,
            Faculty of Dentistry, Universiti Malaya, 50603, Kuala
            Lumpur, Malaysia 
              
             2Department
            of Conservative Dentistry & Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), 71800, Nilai, Negeri Sembilan, Malaysia 
              
             3Department
            of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Federal
              Territory, Malaysia
              
             
             
           Diserahkan: 11 Januari 2023/Diterima: 13 Jun
            2023
            
           
             
           Abstract
            
           This study aimed to provide a comprehensive review of various recent methods
            that can be used to assess the fit and accuracy of additive-manufactured removable
              partial dentures (RPDs), focusing on 3D-printed RPDs. An
                electronic search of the English language literature from January 2000 to February 2022 was performed using four
                  databases: Medline/PubMed, Scopus, Web of Science, and EBSCOhost, using
                  relevant keywords. The parameters of interest were extracted and tabulated. Of
                  936 retrieved studies, 26 studies were
                    included. Most of the studies were laboratory studies, conducted between
                  2011 and 2022, did not include control group, used stone cast model as
                  reference, used direct 3D printing method, and polished the final RPD
                  framework. Methods of assessment can be divided into two categories: 1) qualitative assessment which is based mainly on visual
                    inspection or tactile sense, and 2) quantitative assessment which includes optical assessment (with or without a
                      registration material) and computerized assessment based on surface-matching software programs. In conclusion, computerized assessment using different surface
                        matching software provides more accurate and precise
                          quantitative assessment of denture fit and allows researcher and practitioner to detect minute dimensional changes that
                            cannot be detected visually.
                            
                           
             
           Keywords: Accuracy;
            digital dentistry; fit; removable partial dentures; trueness; 3D-printing
              
             
             
           Abstrak
            
           Penyelidikan ini
            bertujuan membuat tinjauan menyeluruh tentang kaedah yang digunakan untuk
            menilai padanan dan ketepatan
              gigi palsu sebahagian (RPD) memfokuskan kepada dentur yang dihasilkan secara
              cetakan 3D. Pencarian kepustakaan elektronik berbahasa
                Inggeris dari Januari 2000 hingga Februari 2022 dilakukan menggunakan empat
                pangkalan data: Medline/PubMed, Scopus, Web of Science dan EBSCOhost
                menggunakan kata kunci yang berkaitan. Beberapa parameter telah dinilai dan
                dijadualkan. Daripada 936 kajian yang dijumpai, hanya 26 kajian dipilih.
                Sebahagian besar adalah kajian makmal yang dijalankan di antara tahun 2011 dan
                2022, tidak melibatkan kumpulan kawalan, menggunakan model tuangan sebagai
                rujukan, menggunakan kaedah cetakan 3D secara langsung dan menggilap kerangka
                RPD akhir. Kaedah penilaian dibahagi kepada dua kategori: 1) penilaian
                kualitatif yang menggunakan pemeriksaan secara visual atau sentuhan dan 2)
                penilaian kuantitatif termasuk secara optikal (menggunakan bahan registrasi
                atau tanpanya) dan penilaian secara berkomputer menggunakan program perisian
                padanan-permukaan. Kesimpulannya, penilaian secara berkomputer menggunakan
                program perisian padanan-permukaan memberi keputusan penilaian kuantitatif yang
                lebih tepat dan terperinci kepada padanan gigi palsu dan membolehkan pengkaji
                dan pengamal pergigian mengesan perubahan dimensi walaupun kecil yang tidak
                boleh dikesan oleh mata kasar.
                
               
             
           Kata kunci: Cetakan
            3D; gigi palsu sebahagian; ketepatan; padanan; pergigian digital
            
           
             
           RUJUKAN
            
           
            
            Academy of Prosthodontics. 1995. Principles, concepts,
              and practices in prosthodontics. J.
                Prosthet. Dent. 73(1): 73-94. doi: 10.1016/s0022-3913(05)80276-8
              
             Ahmed, N., Abbasi, M.S., Haider, S., Ahmed, N., Habib,
            S.R., Altamash, S., Zafar, M.S. & Alam, M.K. 2021. Fit accuracy of
            removable partial denture frameworks fabricated with CAD/CAM, rapid
            prototyping, and conventional techniques: A systematic review. Biomed. Res. Int. 2021: 3194433. doi:
            10.1155/2021/3194433
            
           Al Mortadi, N., Alzoubi, K.H. & Williams, R. 2020.
            A scoping review on the accuracy of fit of removable partial dentures in a
            developing digital context. Clin. Cosmet.
              Investig. Dent. 12: 551-562. doi: 10.2147/ccide.S282300
            
           Alharbi, N., Wismeijer, D. & Osman, R.B. 2017.
            Additive manufacturing techniques in prosthodontics: Where do we currently
            stand? A critical review. Int. J.
              Prosthodont. 30(5): 474-484. doi: 10.11607/ijp.5079
            
           Alifui-Segbaya, F., Williams, R.J. & George, R.
            2017. Additive manufacturing: A novel method for fabricating cobalt-chromium
            removable partial denture frameworks. Eur.
              J. Prosthodont. Restor. Dent. 25(2): 73-78. doi: 10.1922/EJPRD_1598Alifui-Segbaya06
            
           Almufleh, B., Emami, E., Alageel, O., de Melo, F.,
            Seng, F., Caron, E., Nader, S.A., Al-Hashedi, A., Albuquerque, R., Feine, J.
            & Tamimi, F. 2018. Patient satisfaction with laser-sintered removable
            partial dentures: A crossover pilot clinical trial. J. Prosthet. Dent. 119(4): 560-567.e1. doi:
            10.1016/j.prosdent.2017.04.021
            
           Arnold, C., Hey, J., Schweyen, R. & Setz, J.M.
            2018. Accuracy of CAD-CAM-fabricated removable partial dentures. J. Prosthet. Dent. 119(4): 586-592. doi:
            10.1016/j.prosdent.2017.04.017
            
           Azari, A. & Nikzad, S. 2009. The evolution of
            rapid prototyping in dentistry: A review.  Rapid Prototyping Journal 15(3): 216-225. doi: 10.1108/13552540910961946
            
           Baig, M.R., Tan, K.B. & Nicholls, J.I. 2010.
            Evaluation of the marginal fit of a zirconia ceramic computer-aided machined
            (CAM) crown system. J. Prosthet. Dent. 104(4): 216-27. doi: 10.1016/s0022-3913(10)60128-x
            
           Bajunaid, S.O., Altwaim, B., Alhassan, M. &
            Alammari, R. 2019. The fit accuracy of removable partial denture metal frameworks
            using conventional and 3D printed techniques: An in vitro study. J. Contemp. Dent. Pract. 20(4): 476-481.
            
           Batalha, A.E.F. & Araújo, R.M. 2017. Development
            of removable partial dentures by using additive manufacture and casting
            processes. Archives of Materials Science
              and Engineering 87(1): 33-40.
            
           Bibb, R., Eggbeer, D. & Williams, R. 2006. Rapid
            manufacture of removable partial denture frameworks. Rapid Prototyping Journal 12(2): 95-99. doi:
            10.1108/13552540610652438
            
           British Society for the Study of Prosthetic Dentistry.
            1981. Guides to standards in prosthetic dentistry. A report by the British
            Society for the study of prosthetic dentistry. Br. Dent. J. 150(6): 167-169. doi: 10.1038/sj.bdj.4804565
            
           Brudvik, J.S. & Reimers, D. 1992. The
            tooth-removable partial denture interface. J.
              Prosthet. Dent. 68(6): 924-927. doi: 10.1016/0022-3913(92)90552-l
            
           Cabrita, J.P., Mendes, T.A., Martins, J.P. &
            Lopes, L.P. 2021. Removable partial denture metal framework manufactured by
            selective laser melting technology - A clinical report.  Revista
              Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial 62(2): 109-113.
            
           Campbell, S.D., Cooper, L., Craddock, H., Hyde, T.P.,
            Nattress, B., Pavitt, S.H. & Seymour, D.W. 2017. Removable partial
            dentures: The clinical need for innovation. J.
              Prosthet. Dent. 118(3): 273-280. doi: 10.1016/j.prosdent.2017.01.008
            
           Carneiro Pereira, A.L., Martins de Aquino, L.M.,
            Carvalho Porto de Freitas, R.F., Soares Paiva Tôrres, A.C. & da Fonte Porto
            Carreiro, A. 2019. CAD/CAM-fabricated removable partial dentures: A case
            report.  Int. J. Comput. Dent. 22(4): 371-379.
            
           Chen, G.X. & Guang, K. 2012. Research of metallic
            part fabrication by selective laser melting.  Applied Mechanics and Materials 120: 284-287. doi: 10.4028/www.scientific.net/AMM.120.284
            
           Chen, G.X., Zeng, X.Y., Wang, Z.M., Guan, K. &
            Peng, C.W. 2011. Fabrication of removable partial denture framework by
            selective laser melting. Advanced
              Materials Research 317-319: 174-178. doi: 10.4028/www.scientific.net/AMR.317-319.174
            
           Chen, H., Li, H., Zhao, Y., Zhang, X., Wang, Y. &
            Lyu, P. 2019. Adaptation of removable partial denture frameworks fabricated by
            selective laser melting. J. Prosthet.
              Dent. 122(3): 316-324. doi: 10.1016/j.prosdent.2018.11.010
            
           Dunham, D., Brudvik, J.S., Morris, W.J., Plummer, K.D.
            & Cameron, S.M. 2006. A clinical investigation of the fit of removable
            partial dental prosthesis clasp assemblies. J.
              Prosthet. Dent. 95(4): 323-326. doi: 10.1016/j.prosdent.2006.02.001
            
           Eggbeer, D., Bibb, R. & Williams, R. 2005. The
            computer-aided design and rapid prototyping fabrication of removable partial
            denture frameworks. Proc. Inst. Mech.
              Eng. H. 219(3): 195-202. doi: 10.1243/095441105x9372
            
           Fenlon, M.R., Juszczyk, A.S., Hughes, R.J., Walter,
            J.D. & Sherriff, M. 1993. Accuracy of fit of cobalt-chromium removable
            partial denture frameworks on master casts. Eur.
              J. Prosthodont. Restor. Dent. 1(3): 127-130.
            
           Frank, R.P., Brudvik, J.S., Leroux, B., Milgrom, P.
            & Hawkins, N. 2000. Relationship between the standards of removable partial
            denture construction, clinical acceptability, and patient satisfaction. J. Prosthet. Dent. 83(5): 521-527. doi:
            10.1016/s0022-3913(00)70008-4
            
           Gan, N., Ruan, Y., Sun, J., Xiong, Y. & Jiao, T.
            2018. Comparison of adaptation between the major connectors fabricated from
            intraoral digital impressions and extraoral digital impressions. Sci. Rep. 8(1): 529. doi:
            10.1038/s41598-017-17839-4
            
           Hodson, T.O. 2022. Root mean square error (RMSE) or
            mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions 15(14): 5481-5487.
            
           Hu, F., Pei, Z. & Wen, Y. 2019. Using intraoral
            scanning technology for three-dimensional printing of Kennedy Class I removable
            partial denture metal framework: A clinical report. J. Prosthodont. 28(2): e473-e476. doi: 10.1111/jopr.12712
            
           International Organization for Standardization. 1998. Accuracy
            (Trueness and Precision) of Measurement Methods and Results - Part 1: General
            Principles and Definitions - Technical Corrigendum 1. Geneva, Switzerland:
            International Organization for Standardization.
            
           Kattadiyil, M.T., Mursic, Z., AlRumaih, H. &
            Goodacre, C.J. 2014. Intraoral scanning of hard and soft tissues for partial
            removable dental prosthesis fabrication. J.
              Prosthet. Dent. 112(3): 444-448. doi: 10.1016/j.prosdent.2014.03.022
            
           Lang, L.A. & Tulunoglu, I. 2014. A critically
            appraised topic review of computer-aided design/computer-aided machining of
            removable partial denture frameworks. Dent.
              Clin. North Am. 58(1): 247-255. doi: 10.1016/j.cden.2013.09.006
            
           Lee, J.W., Park, J.M., Park, E.J., Heo, S.J., Koak,
            J.Y. & Kim, S.K. 2017. Accuracy of a digital removable partial denture
            fabricated by casting a rapid prototyped pattern: A clinical study. J. Prosthet. Dent. 118(4): 468-474. doi:
            10.1016/j.prosdent.2016.12.007
            
           Mai, H.Y., Mai, H.N., Kim, H.J., Lee, J. & Lee,
            D.H. 2022. Accuracy of removable partial denture metal frameworks fabricated by
            computer-aided design/computer-aided manufacturing method: A systematic review
            and meta-analysis. J. Evid. Based Dent.
              Pract. 22(3): 101681. doi: 10.1016/j.jebdp.2021.101681
            
           Mendes, T.A., Marques, D., Lopes, L.P. & Caramês,
            J. 2019. Total digital workflow in the fabrication of a partial removable
            dental prostheses: A case report. SAGE
              Open Med. Case Rep. 7: 2050313x19871131. doi: 10.1177/2050313x19871131
            
           Negm, E.E., Aboutaleb, F.A. & Alam-Eldein, A.M.
            2019. Virtual evaluation of the accuracy of fit and trueness in maxillary
            poly(etheretherketone) removable partial denture frameworks fabricated by direct
            and indirect CAD/CAM techniques. J.
              Prosthodont. 28(7): 804-810. doi: 10.1111/jopr.13075
            
           Oka, Y., Sasaki, J., Wakabayashi, K., Nakano, Y.,
            Okamura, S.Y., Nakamura, T., Imazato, S. & Yatani, H. 2016. Fabrication of
            a radiopaque fit-testing material to evaluate the three-dimensional accuracy of
            dental prostheses. Dent. Mater. 32(7): 921-928. doi: 10.1016/j.dental.2016.03.011
            
           Peng, P-W., Hsu, C-Y., Huang, H-Y., Chao, J-C. &
            Lee, W-F. 2020. Trueness of removable partial denture frameworks additively
            manufactured with selective laser melting. J.
              Prosthet. Dent. 127(1): 122-127.
            
           Preshaw, P.M., Walls, A.W., Jakubovics, N.S.,
            Moynihan, P.J., Jepson, N.J. & Loewy, Z. 2011. Association of removable
            partial denture use with oral and systemic health. J. Dent. 39(11): 711-719. doi: 10.1016/j.jdent.2011.08.018
            
           Rudd, R.W. & Rudd, K.D. 2001. A review of 243
            errors possible during the fabrication of a removable partial denture: Part I. J. Prosthet. Dent. 86(3): 251-261. doi:
            10.1067/mpr.2001.118021
            
           Soltanzadeh, P., Suprono, M.S., Kattadiyil, M.T.,
            Goodacre, C. & Gregorius, W. 2019. An in vitro investigation of
            accuracy and fit of conventional and CAD/CAM removable partial denture
            frameworks. J. Prosthodont. 28(5):
            547-555. doi: 10.1111/jopr.12997
            
           Stern, M.A., Brudvik, J.S. & Frank, R.P. 1985.
            Clinical evaluation of removable partial denture rest seat adaptation. J. Prosthet. Dent. 53(5): 658-662. doi:
            10.1016/0022-3913(85)90015-0
            
           Takahashi, K., Torii, M., Nakata, T., Kawamura, N.,
            Shimpo, H. & Ohkubo, C. 2020. Fitness accuracy and retentive forces of
            additive manufactured titanium clasp. Journal
              of Prosthodontic Research 64(4): 468-477.
            
           Tasaka, A., Kato, Y., Odaka, K., Matsunaga, S., Goto,
            T.K., Abe, S. & Yamashita, S. 2019. Accuracy of clasps fabricated with
            three different CAD/CAM technologies: Casting, milling, and selective laser
            sintering. Int. J. Prosthodont. 32(6): 526-529. doi: 10.11607/ijp.6363
            
           Tasaka, A., Shimizu, T., Kato, Y., Okano, H., Ida, Y.,
            Higuchi, S. & Yamashita, S. 2020. Accuracy of removable partial denture
            framework fabricated by casting with a 3D printed pattern and selective laser
            sintering. Journal of Prosthodontic
              Research 64(2): 224-230.
            
           Torabi, K., Farjood, E. & Hamedani, S. 2015. Rapid
            prototyping technologies and their applications in prosthodontics, a review of
            literature. J. Dent. (Shiraz) 16(1):
            1-9.
            
           Torii, M., Nakata, T., Takahashi, K., Kawamura, N.,
            Shimpo, H. & Ohkubo, C. 2018. Fitness and retentive force of
            cobalt-chromium alloy clasps fabricated with repeated laser sintering and
            milling. J. Prosthodont. Res. 62(3):
            342-346. doi: 10.1016/j.jpor.2018.01.001
            
           Tregerman, I., Renne, W., Kelly, A. & Wilson, D.
            2019. Evaluation of removable partial denture frameworks fabricated using 3
            different techniques. J. Prosthet. Dent. 122(4): 390-395. doi: 10.1016/j.prosdent.2018.10.013
            
           Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K.,
            Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L.,
            Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L.,
            Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald,
            M.T., Langlois, E.V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp,
            Ö. & Straus, S.E. 2018. PRISMA extension for scoping reviews (PRISMA-ScR):
            Checklist and explanation. Ann. Intern.
              Med. 169(7): 467-473. doi: 10.7326/m18-0850
            
           Williams, R.J., Bibb, R., Eggbeer, D. & Collis, J.
            2006. Use of CAD/CAM technology to fabricate a removable partial denture
            framework. J. Prosthet. Dent. 96(2):
            96-99. doi: 10.1016/j.prosdent.2006.05.029
            
           Wu, J., Li, Y. & Zhang, Y. 2017. Use of intraoral
            scanning and 3-dimensional printing in the fabrication of a removable partial
            denture for a patient with limited mouth opening. J. Am. Dent. Assoc. 148(5): 338-341. doi:
            10.1016/j.adaj.2017.01.022
            
           Xie, W., Zheng, M., Wang, J. & Li, X. 2020. The
            effect of build orientation on the microstructure and properties of selective
            laser melting Ti-6Al-4V for removable partial denture clasps. J. Prosthet. Dent. 123(1): 163-172. doi:
            10.1016/j.prosdent.2018.12.007
            
           Ye, H., Ning, J., Li, M., Niu, L., Yang, J., Sun, Y.
            & Zhou, Y. 2017. Preliminary clinical application of removable partial
            denture frameworks fabricated using computer-aided design and rapid prototyping
            techniques. Int. J. Prosthodont. 30(4): 348-353. doi: 10.11607/ijp.5270
            
           
             
           
            
            *Pengarang untuk surat-menyurat; email: nosizana@um.edu.my    
            
             
                   
          
          
           
         
            
          
           
          
           
           |