| Sains Malaysiana 53(10)(2024): 3511-3520
          
         http://doi.org/10.17576/jsm-2024-5310-23
            
           
             
           Enhancing Indoor Photovoltaic
            Performance of Inverted Type Organic Solar Cell by Controlling Photoactive
            Layer Solution Concentration
            
           (Meningkatkan Prestasi Fotovoltaik Dalaman Sel Suria Organik Jenis Terbalik dengan Mengawal Kepekatan Larutan Lapisan Fotoaktif)
            
            
            
           MOHAMED NAFEER WAJIDH1,
            NOUR ATTALLAH ISSA1, KAM SHENG LAU1, SIN TEE TAN2,
            CHIN HUA CHIA1, MUSLIZAINUN MUSTAPHA1,
            MOHAMMAD HAFIZUDDIN HJ JUMALI1 & CHI CHIN YAP1,*
  
  
            
           1Department of Applied Physics, Faculty of Science and
            Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  
           2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
            Malaysia
            
           
             
           Diserahkan: 1 April 2024/Diterima: 27 Ogos 2024
            
           
             
           Abstract
            
           With the
            development of various low-power indoor electronic devices, indoor
            photovoltaics, particularly organic solar cells (OSCs) have attracted a
              lot of interest in recent years. Increasing the light absorption and
              suppressing the leakage current are pivotal to improve the indoor photovoltaic performance of OSCs. In this study, the carbon quantum dots
                (CQDs)-incorporated photoactive layer solution concentration was
                  varied to improve the photovoltaic performance under 1-sun and indoor white
                    LED illumination. The
                      photoactive layer was composed of (6,6)-phenyl-C61-butyric acid methyl ester)
                      (PCBM) as the acceptor and poly(3-hexylthiophene) (P3HT) as the donor.
                    The ZnO electron transport layer was deposited on fluorine-doped tin oxide
                      (FTO)-coated glass substrates using a spin coating technique. The photoactive
                      layers with different solution concentrations were spin coated on top of the ZnO layer. For device completion, silver anode was
                        thermally evaporated. It is interesting to find that the optimum solution
                        concentration obtained under white LED illumination is larger than that under
                        1-sun illumination. The maximum power conversion efficiency (PCE) of 0.95% was obtained under 1-sun
                        illumination for device with the solution concentration of 36 mg/mL, whereas,
                        under white LED illumination, the highest PCE of 3.59% was obtained for the
                        device with solution concentration of 48 mg/mL.The discrepancy is ascribed to
                          the higher light absorption of thicker photoactive layer and less significant charge recombination
                            loss under weak light intensity. This study highlights the importance of using
                              different optimization strategies to improve the photovoltaic performance of
                              OSCs for outdoor and indoor applications.
                            
             
             
           Keywords: Carbon quantum dots; charge recombination;
            leakage current; light absorption; thickness
            
           
             
           Abstrak
            
           Dengan pembangunan pelbagai
            peranti elektronik dalaman berkuasa rendah, fotovoltaik dalaman, terutamanya sel suria organik (OSC) telah menarik
              banyak perhatian sejak beberapa tahun kebelakangan ini. Peningkatan penyerapan cahaya dan pengurangan kebocoran arus adalah penting untuk
                meningkatkan prestasi fotovoltaik dalaman OSC. Dalam kajian ini,
                  kepekatan larutan lapisan fotoaktif yang digabungkan titik kuantum karbon
                  (CQDs) telah diubah untuk meningkatkan prestasi fotovoltaik di bawah
                  pencahayaan 1-matahari dan LED putih dalaman. Lapisan fotoaktif terdiri
                    daripada (6,6)-fenil-C61 butrik
                      asid metal ester (PCBM)
                        sebagai penerima dan poli (3-heksilthiofena) (P3HT) sebagai penderma.
                          Lapisan pengangkut elektron ZnO dimendapkan pada substrat kaca
                            bersalut oksida timah terdop fluorin (FTO) menggunakan teknik salutan
                              putaran. Lapisan fotoaktif dengan kepekatan larutan yang berbeza disalut di
                              atas lapisan ZnO. Untuk menghasilkan peranti, anod perak disejat
                                secara terma. Adalah menarik untuk mendapati bahawa kepekatan larutan optimum
                                yang diperoleh di bawah pencahayaan LED putih adalah lebih besar daripada di
                                bawah pencahayaan 1-matahari. Kecekapan penukaran kuasa (PCE) maksimum 0.95% diperoleh di bawah pencahayaan
                                1-matahari untuk peranti dengan kepekatan larutan 36 mg/mL, manakala, di bawah
                                pencahayaan LED putih, PCE tertinggi sebanyak 3.59% diperoleh untuk peranti
                                dengan kepekatan larutan 48 mg/mL. Percanggahan itu adalah disebabkan oleh
                                penyerapan cahaya yang lebih tinggi bagi lapisan fotoaktif yang lebih tebal dan
                                kehilangan penggabungan semula cas yang kurang ketara di bawah keamatan cahaya
                                yang lemah. Kajian ini menonjolkan kepentingan menggunakan
                                  strategi pengoptimuman yang berbeza untuk meningkatkan prestasi fotovoltaik OSC
                                  untuk aplikasi luaran dan dalaman.
  
 
             
           Kata kunci: Arus bocor; ketebalan; penggabungan semula
            cas; penyerapan cahaya; titik kuantum karbon
            
           
             
           RUJUKAN
            
           Alkhalayfeh, M.A., Abdul Aziz, A.,
            Pakhuruddin, M.Z., Katubi, K.M.M. & Ahmadi, N. 2022. Recent development of indoor organic photovoltaics. Physica Status Solidi (A) Applications and
              Materials Science 219: 2100639.
  
 Baek, W.H., Yang, H., Yoon, T.S.,
            Kang, C.J., Lee, H.H. & Kim, Y.S. 2009. Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells. Solar
              Energy Materials and Solar Cells 93(8): 1263-1267.
  
 Farooq, W., Khan, A.D., Khan, A.D. & Noman, M.
            2020. Enhancing the power conversion
              efficiency of organic solar cells. Optik 208:
              164093.
  
 Hazar Apaydin, D., Esra Yildiz,
            D., Cirpan, A. & Toppare,
            L. 2013. Optimizing the organic solar cell efficiency:
            Role of the active layer thickness. Solar Energy Materials and Solar Cells 113: 100-105.
  
           Ho, C.S., Huang, E.L., Hsu,
            W.C., Lee, C.S., Lai, Y.N., Yao, E.P. & Wang, C.W. 2012. Thermal effect on
            polymer solar cells with active layer concentrations of 3-5 wt%. Synthetic Metals 162(13-14): 1164-1168.
  
           Issa, N.A., Yap, C.C., Tan,
            S.T., Hong, K.J., Lau, K.S., Khairulaman, F.L., Chia,
            C.H., Jumali, M.H.H. & Chong, K-K. 2022.
            Photovoltaic performance improvement of organic solar cell with ZnO nanorod arrays as electron transport layer using carbon
            quantum dots-incorporated photoactive layer. Optical Materials 132:
            112876.
  
           Jahandar, M., Kim, S. &
            Lim, D.C. 2021. Indoor organic photovoltaics for self-sustaining IoT devices:
            Progress, challenges and practicalization. ChemSusChem 14: 3449-3474.
  
           Kang, M.H., Heo, D.K., Kim,
            D.H., Lee, M., Ryu, K., Kim, Y.H. & Yun, C. 2019. Fabrication of
            spray-coated semitransparent organic solar cells. IEEE Journal of the
              Electron Devices Society 7: 1129-1132.
  
           Khairulaman, F.L., Yap, C.C. & Jumali,
            M.H.H. 2021. Improved performance of inverted type organic
              solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Materials Letters 283:
            128827.
  
           Khairulaman, F.L., Yap, C.C., Jumali,
            M.H.H. & Issa, N.A. 2022. Optimization of CuI-doped
            P3HT:PCBM layers in inverted-type organic solar cells
            for indoor light applications. Sains Malaysiana 51(12): 4059-4069.
  
           Li, B., Hou, B. & Amaratunga, G.A.J. 2021. Indoor photovoltaics, The Next Big Trend in
            solution-processed solar cells. InfoMat 3:
            445-459.
  
           Lim, E. L., Yap, C. C., Jumali, M. H. H. & Khairulaman,
            F. L. 2019. Solution-dispersed copper iodide anode buffer layer gives P3HT:PCBM-based organic solar cells an efficiency boost. Journal
              of Materials Science: Materials in Electronics 30(3): 2726–2731.
  
           Liu, J., Cui, Y., Zu, Y., An,
            C., Xu, B., Yao, H., Zhang, S. & Hou, J. 2020. Organic photovoltaic cells
            for low light applications offering new scope and orientation. Organic
              Electronics 85: 105798.
  
           Ma, L-K., Chen, Y., Chow, P.C.Y., Zhang, G., Huang, J.,
            Ma, C., Zhang, J., Yin, H., Cheung, A.M.H., Wong, K.S., So, S.K. & Yan, H.
            2020. High-efficiency indoor organic
              photovoltaics with a band-aligned interlayer. Joule 4(7): 1486-1500.
  
 Majumder, C., Rai, A. &
            Bose, C. 2018. Performance optimization of bulk heterojunction organic solar
            cell. Optik 157: 924-929.
  
           Moustafa, E., Pallares, J.
  & Marsal, L.F. 2023. Investigating the role of PM6:Y7 layer thickness on
            optimizing non-fullerene organic solar cells performance through impedance
            spectroscopy analysis. IEEE Journal of the Electron Devices Society 11:
            642-649.
  
           Park, S.Y., Li, Y., Kim, J.,
            Lee, T.H., Walker, B., Woo, H.Y. & Kim, J.Y. 2018. Alkoxybenzothiadiazole-based
            fullerene and nonfullerene polymer solar cells with
            high shunt resistance for indoor photovoltaic applications. ACS Applied
              Materials and Interfaces 10(4): 3885-3894.
  
           Scholtz, L., Ladanyi, L. & Mullerova,
            J. 2014. Influence of surface roughness
              on optical characteristics of multilayer solar cells. Advances in Electrical
                and Electronic Engineering 12(6): 631-638.
  
 Shaban, M., Benghanem,
            M., Almohammedi, A. & Rabia, M. 2021.
            Optimization of the active layer P3HT:PCBM for organic
            solar cell. Coatings 11(7): 863.
  
           Shah, S.K., Khan, J., Ullah, I. & Khan, Y. 2017. Optimization of active-layer thickness, top electrode
            and annealing temperature for polymeric solar cells. AIMS Materials Science 4(3): 789-799.
  
           Sharma, N., Gupta, S.K. & Singh Negi, C.M. 2019. Influence of active layer thickness on photovoltaic
            performance of PTB7:PC70BM bulk heterojunction solar cell. Superlattices and
              Microstructures 135: 106278.
  
           Shin, S.C., Koh, C.W., Vincent,
            P., Goo, J.S., Bae, J.H., Lee, J.J., Shin, C., Kim, H., Woo, H.Y. & Shim, J.W. 2019. Ultra-thick semi-crystalline photoactive donor
              polymer for efficient indoor organic photovoltaics. Nano
                Energy 58:
                  466-475.
  
 Tadeson, G. & Sabat, R.G. 2019. Enhancement of the power conversion efficiency of
            organic solar cells by surface patterning of azobenzene thin films. ACS
              Omega 4(26): 21862-21872.
  
           Taibi, I., Belghachi,
            A. & Abid, H. 2016. Effect of trapping and temperature on the performance
            of P3HT: PCBM organic solar cells. Optik 127(20): 8592-8599.
  
 Ulum, M.S., Sesa, E., Kasman & Belcher, W. 2019. The effect of active layer thickness on P3HT:PCBM nanoparticulate organic photovoltaic device
            performance. Journal of Physics: Conference Series 1242(1): 012025.
  
           Wajidh, M.N., Yap, C.C., Issa, N.A., Lau, K.S., Tan, S.T., Jumali, M.H.H., Mustapha, M. & Chia, C.H. 2023. Photovoltaic performance improvement of inverted type organic solar cell by co-introducing
            isopropanol and carbon quantum dots in photoactive layer. Journal of
              Materials Science: Materials in Electronics 34: 1075.
  
           Xu, B., Sai-Anand, G., Unni, G.E., Jeong, H.M., Kim,
            J.S., Kim, S.W., Kwon, J.B., Bae, J.H. & Kang, S.W. 2019. Pyridine-based additive optimized P3HT:PC61BM
              nanomorphology for improved performance and stability in polymer solar cells. Applied
                Surface Science 484: 825-834.
  
 Yan, N., Zhao, C., You, S.,
            Zhang, Y. & Li, W. 2020. Recent progress of thin-film photovoltaics for
            indoor application. Chinese Chemical Letters 31(3): 643-653.
  
           Yu, H., Li, Y., Dong, Y. &
            Huang, X. 2016. Fabrication and optimization of polymer solar cells based on
            P3HT:PC70BM system. International Journal of Photoenergy 2016: 702-709.
  
           Yun, T.W. & Sulaiman, K.
            2011. Fabrication and morphological characterization of hybrid polymeric solar
            cells based on P3HT and inorganic nanocrystal blends. Sains Malaysiana 40(1): 43-47.
  
           Zang, Y., Xin, Q., Zhao, J.
  & Lin, J. 2018. Effect of active layer thickness on the performance of
            polymer solar cells based on a highly efficient donor material of PTB7-Th. Journal
              of Physical Chemistry C 122(29): 16532-16539.
  
           Zhang, Y., Duan, C. & Ding, L. 2020. Indoor organic photovoltaics. Science Bulletin 65: 2040-2042.
            
           Zhou, X., Wu, H., Lin, B.,
            Naveed, H.B., Xin, J., Bi, Z., Zhou, K., Ma, Y., Tang, Z., Zhao, C., Zheng, Q.,
            Ma, Z. & Ma, W. 2021. Different morphology dependence for efficient indoor organic photovoltaics: The role of the leakage current and
            recombination losses. ACS Applied Materials and Interfaces 13(37):
            44604-44614.
  
           
             
           *Pengarang untuk surat-menyurat; email:
            ccyap@ukm.edu.my
            
                 
             
                 
  
                       
             
             
             
             
               
             
               
            
           
            
           
           
          
          
           
         
            
          
           
          
           
           |