| Sains Malaysiana 53(10)(2024): 3341-3354
          
         http://doi.org/10.17576/jsm-2024-5310-09
            
           
             
           Comprehensive Insights into Sitobion avenaePreferences and Performance on Pakistan’s
            Wheat Cultivars Leading to Identification of Potential RNAi Targets
            
           (Wawasan Komprehensif tentang Keutamaan dan Prestasi Sitobion avenae pada Kultivar Gandum Pakistan yang Membawa kepada Pengenalpastian Sasaran Berpotensi RNAi)
            
           
             
           RUHMA MUKHTAR, EIJAB AFZAL,
            RABIA NOREEN, NADIA ZEESHAN & AMBER AFROZ*
            
 
             
           Department
            of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus,
            Gujrat Pakistan
            
           
             
           Diserahkan: 14 Januari 2024/Diterima: 26 Ogos 2024
            
           
             
           Abstract
            
           Sitobion avenae, a notable hemipteran pest,
            poses a significant economic threat to Triticum aestivum due to its
            short generation times and high reproductive rates. Challenges like the
            development of insecticide resistance, the limited impact of insecticidal
            genes, and associated risks led to seeking a more precise approach like RNA
            interference. This study evaluated S. avenae response on seven different local cultivars (Anaj-2021, Subhani-2022,
              Fakhar-e-Bhakkar-2021, Akbar-2019, Mexi-Pak-2022, Barani-2022, &
              Dilkash-2022) through aphid preference test, aphid choice assay,
                and aphid performance test. Further, differential proteomics of S. avenae (pre- and post-feeding on susceptible and
                resistant wheat cultivars) was performed using Sodium Dodecyl
                Sulphate-Polyacrylamide Gel Electrophoresis. Among the local wheat cultivars,
                Anaj-2021 was regarded as the most susceptible cultivar while Barani-2022 was
                declared the most resistant. The differential proteome analysis of Anaj-2021 (S),
                and Barani-2022 (R) show 11 upregulated proteins including Glutathione S-
                transferase, Cathepsin, Carbonic anhydrases, Ecdysone induced protein, Odorant
                binding protein 3, Heat shock protein, Salivary effector protein, SID1-like
                protein, Sodium channel protein, chemosensory protein, and trypsin were
                upregulated in S. avenaeon wheat feeding as
                compared to non-feeding. Trypsin, cathepsin-B and carbonic anhydrases are
                connected to detoxification and digestion. While odorant binding proteins,
                salivary effector proteins, sodium channel proteins and ecdysone- induced
                proteins facilitate feeding process in S. avenae. The enhanced expression of proteins
                having detoxification, digestion or defense activity
                implicates their essential role in the survival of S. avenae. Therefore, these proteins have the potential to serve as RNA interference
                targets, against which double-stranded RNA could be designed and expressed in
                wheat cultivars to make them resistant to local S. avenae infestation and avert yield loss.
  
 
             
           Keywords: Phylogenetic analysis; proteome; RNA interference; SDS-PAGE
            
           
             
           Abstrak
            
           Sitobion avenae, perosak hemiptera yang terkenal
            menimbulkan ancaman ekonomi yang ketara kepada Triticum aestivum kerana
            masa generasinya yang singkat dan kadar pembiakan yang tinggi. Cabaran seperti
            pembangunan rintangan racun serangga, kesan terhad gen insektisida dan risiko
            yang berkaitan membawa kepada mencari pendekatan yang lebih tepat seperti
            gangguan RNA. Kajian ini menilai tindak balas S. avenae pada tujuh
            kultivar tempatan yang berbeza (Anaj-2021, Subhani-2022, Fakhar-e-Bhakkar-2021,
            Akbar-2019, Mexi-Pak-2022, Barani-2022 & Dilkash-2022) melalui aphid ujian
            keutamaan, ujian pilihan aphid dan ujian prestasi aphid. Selanjutnya, proteomik
            pembezaan S. avenae (sebelum dan selepas makan pada kultivar gandum yang
            mudah terdedah dan tahan) dilakukan menggunakan Sodium Dodecyl
            Sulphate-Polyacrylamide Gel Electrophoresis. Antara kultivar gandum tempatan,
            Anaj-2021 dianggap sebagai kultivar yang paling mudah terdedah manakala
            Barani-2022 diisytiharkan paling tahan. Analisis proteom pembezaan Anaj-2021
            (S) dan Barani-2022 (R) menunjukkan 11 protein terkawal termasuk Glutathione
              S- transferase, Cathepsin, Carbonic anhydrases, Ecdysone induced protein,
              Odorant binding protein 3, Heat shock protein, Salivary effector protein,
            protein seperti SID1, protein saluran Sodium, protein kemoderia dan tripsin
            telah dikawal selia dalam S. avenae pada pemberian makan gandum
            berbanding dengan tidak diberi makan. Trypsin, cathepsin-B dan anhidrase
            karbonik disambungkan kepada detoksifikasi dan pencernaan. Manakala protein
            pengikat bau, protein efektor air liur, protein saluran natrium dan protein
            yang disebabkan oleh ecdysone memudahkan proses penyusuan di S. avenae.
            Pengekspresan protein yang dipertingkatkan mempunyai aktiviti detoksifikasi,
            pencernaan atau pertahanan membabitkan peranan pentingnya dalam kemandirian S.
              avenae. Oleh itu, protein ini berpotensi untuk berfungsi sebagai sasaran
            gangguan RNA yang terhadapnya RNA untai dua boleh direka bentuk dan
            diekspresikan dalam kultivar gandum untuk menjadikannya tahan terhadap serangan S. avenae tempatan dan mengelakkan kehilangan hasil.
  
           
             
           Kata kunci: Analisis filogenetik; gangguan RNA; proteome; SDS-PAGE
            
           
             
           RUJUKAN
            
           
            
            Afroz, A., Ali, G.M., Mir, A. &
              Komatsu, S. 2011. Application of proteomics to investigate stress-induced
              proteins for improvement in crop protection. Plant Cell Reports 30: 745-763.
  
             Afzal,
            F., Chaudhari, S.K., Gul, A., Farooq, A., Ali, H., Nisar, S., Sarfraz, B.,
            Shehzadi, K.J. &  Mujeeb-Kazi, A.
            2015. Bread wheat (Triticum aestivum L.) under biotic and abiotic
            stresses: An overview. In Crop Production
              and Global Environmental Issues, edited by Hakeem, K. Springer, Cham. pp.
            293-317.
  
           Akhremko,
            A., Vasilevskaya, E. & Fedulova, L. 2020. Adaptation of two-dimensional
            electrophoresis for muscle tissue analysis. Slovak
              Journal of Food Sciences 14:
                595-601.
  
           Akhtar,
            N., Hashmat, R.T., Jilani, G., Chughtai, S., Irshad, M. & Yasmin, S. 2007.
            Resistance of different wheat lines to Rhopalosiphum padi (L.)(Aphididae: Homoptera) in Pakistan. Pakistan
              Journal of Zoology 39(3):
            191-194.
  
           Awmack,
            C.S. & Leather, S.R. 2002. Host plant quality and fecundity in herbivorous
            insects. Annu. Rev. Entomol. 47: 817-844.
  
           Bansal,
            R. & Michel, A.P. 2013. Core RNAi machinery and Sid1, a component
            for systemic RNAi, in the hemipteran insect, Aphis glycines. International Journal of Molecular Sciences 14(2): 3786-3801.
  
           Buhler,
            A. & Schweiger, R. 2023. Previous infestation by conspecifics leads to a
            transient increase of the performance of Sitobion avenae aphids on wheat
            leaves. Ecological Entomology 49: 476-488. doi: 10.1111/een.13316
  
           Cai,
            Q., Zhang, Q. & Cheo, M. 2004. Contribution of indole alkaloids to Sitobion
              avenae (F.) resistance in wheat. Journal
                of Applied Entomology 128(8):
            517-521.
  
           Cao,
            H-H., Pan, M-Z., Liu, H-R., Wang, S-H. & Liu, T-X. 2015. Antibiosis and
            tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat
            cultivar. Bulletin of Entomological
              Research 105(4): 448-455.
  
           Cao,
            H-H., Zhang, M., Zhao, H., Zhang, Y., Wang, X-X., Guo, S-S., Zhang, Z-F. &
            Liu, T-X. 2014. Deciphering the mechanism of β-aminobutyric acid-induced
            resistance in wheat to the grain aphid, Sitobion avenae. PLoS ONE 9(3): e91768.
  
           Castro,
            A.M., Vasicek, A., Manifiesto, M., Giménez, D., Tacaliti, M.S., Dobrovolskaya,
            O., Röder, M.S., Snape, J.W. & Börner, A. 2005. Mapping antixenosis genes
            on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat
            aphid. Plant Breeding 124(3): 229-233.
  
           De
            Mandal, S., Chhakchhuak, L., Gurusubramanian, G. & Kumar, N.S. 2014.
            Mitochondrial markers for identification and phylogenetic studies in insects -
            A review. DNA Barcodes 2(1): 1-9.
  
           Dembilio,
  Ó., Jacas, J.A. & Llácer, E. 2009. Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus
    ferrugineus (Col. Curculionidae)? Journal
      of Applied Entomology 133(7):
            565-567.
  
           Deng,
            F. & Zhao, Z. 2014. Influence of catalase gene silencing on the
            survivability of Sitobion avenae. Archives
              of Insect Biochemistry and Physiology 86(1): 46-57.
  
           Douglas,
            A. 2006. Phloem-sap feeding by animals: Problems and solutions. Journal of Experimental Botany 57(4): 747-754.
  
           Feng,
            H., Chen, W., Hussain, S., Shakir, S., Tzin, V., Adegbayi, F., Ugine, T., Fei,
            Z. & Jander, G. 2023. Horizontally transferred genes as RNA interference
            targets for aphid and whitefly control. Plant
              Biotechnology Journal 21(4):
            754-768.
  
           Foster,
            S.P., Paul, V.L., Slater, R., Warren, A., Denholm, I., Field, L.M. &
            Williamson, M.S. 2014. A mutation (L1014F) in the voltage‐gated sodium
            channel of the grain aphid, Sitobion avenae, is associated with
            resistance to pyrethroid insecticides. Pest
              Management Science 70(8):
            1249-1253.
  
           Gebretsadik,
            K.G., Zhang, Y. & Chen, J. 2022. Screening and evaluation for antixenosis
            resistance in wheat accessions and varieties to grain aphid, Sitobion
              miscanthi (Takahashi)(Hemiptera: Aphididae). Plants 11(8): 1094.
  
           Giordanengo,
            P., Brunissen, L., Rusterucci, C., Vincent, C., van Bel, A., Dinant, S.,
            Girousse, C., Faucher, M. & Bonnemain, J-L. 2010. Compatible plant-aphid
            interactions: How aphids manipulate plant responses. Comptes Rendus Biologies 333(6-7):
            516-523.
  
           Guo,
            H., Zhang, Y., Li, B., Li, C., Shi, Q., Zhu-Salzman, K., Ge, F. & Sun, Y.
            2023. Salivary carbonic anhydrase II in winged aphid morph facilitates plant
            infection by viruses. Proceedings of the
              National Academy of Sciences 120(14):
            e2222040120.
  
           Guo,
            M., Ye, J., Gao, D., Xu, N. & Yang, J. 2019. Agrobacterium-mediated
            horizontal gene transfer: Mechanism, biotechnological application, potential
            risk and forestalling strategy. Biotechnology
              Advances 37(1): 259-270.
  
           He, F.
            2011. Bradford protein assay. Bio-protocol 1(6): e45.
  
           Hesler,
            L. & Tharp, C. 2005. Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions. Euphytica 143: 153-160.
  
           Horiike,
            T. 2016. An introduction to molecular phylogenetic analysis. Reviews in Agricultural Science 4: 36-45.
  
           Hu,
            X-S., Liu, Y-J., Wang, Y-H., Wang, Z., Yu, X-L., Wang, B., Zhang, G-S., Zhao,
            H-Y. & Liu, T.X. 2016. Resistance of wheat accessions to the English grain
            aphid Sitobion avenae. PLoS ONE 11(6): e0156158.
  
           Hussain,
            D., Asrar, M., Khalid, B., Hafeez, F., Saleem, M., Akhter, M., Ahmed, M., Ali,
            I. & Hanif, K. 2022. Insect pests of economic importance attacking wheat
            crop (Triticum aestivum L.) in Punjab, Pakistan. International Journal of Tropical Insect Science 42: 9-20.
  
           Huvenne,
            H. & Smagghe, G. 2010. Mechanisms of dsRNA uptake in insects and potential
            of RNAi for pest control: A review. Journal
              of Insect Physiology 56(3):
            227-235.
  
           Jacquin-Joly,
            E., Vogt, R.G., François, M-C. & Nagnan-Le Meillour, P. 2001. Functional
            and expression pattern analysis of chemosensory proteins expressed in antennae
            and pheromonal gland of Mamestra brassicae. Chemical Senses 26(7):
            833-844.
  
           Kranti,
            W., Nivedita, G. & Shindikar, M. 2021. Understanding the plant aphid
            interaction: A review. European Journal
              of Biology and Biotechnology 2(6):
            1-6.
  
           Kurreck,
            J. 2009. RNA interference: From basic research to therapeutic applications. Angewandte Chemie International Edition 48(8): 1378-1398.
  
           Leimu,
            R. & Koricheva, J. 2006. A meta-analysis of genetic correlations between
            plant resistances to multiple enemies. The
              American Naturalist 168(1):
            E15-E37.
  
           Liu,
            Y-L., Guo, H., Huang, L-Q., Pelosi, P. & Wang, C-Z. 2014. Unique function
            of a chemosensory protein in the proboscis of two Helicoverpa species. Journal of Experimental Biology 217(10): 1821-1826.
  
           Mahmood,
            I., Afroz, A., Malik, M.F., Zeeshan, N., Khan, M.R., Rashid, U., Khan, M.A.,
            Ashraf, N.M. & Alam, S. 2022. RNA interference‑mediated knockdown of
            odorant‑binding protein 2 and MP58 gene causes mortality in Myzus
              persicae. International Journal of Tropical Insect Sciences 42:
            315-326. doi.10.1007/s42690-021-00546-z
  
           Nam,
            K.J., Powell, G. & Hardie, J. 2013. Does phloem-based resistance to aphid
            feeding affect host-plant acceptance for reproduction? Parturition of the pea
            aphid, Acyrthosiphon pisum, on two near-isogenic lines of Medicago
              truncatula. Bulletin of Entomological
                Research 103(6): 683-689.
  
           Platková,
            H., Skuhrovec, J. & Saska, P. 2020. Antibiosis to Metopolophium dirhodum (Homoptera: Aphididae) in spring wheat and emmer cultivars. Journal of Economic Entomology 113(6): 2979-2985.
  
           Porcar,
            M., Grenier, A-M., Federici, B. & Rahbé, Y. 2009. Effects of Bacillus
              thuringiensis δ-endotoxins on the pea aphid (Acyrthosiphon pisum). Applied and Environmental Microbiology 75(14): 4897-4900.
  
           Powell,
            G., Tosh, C.R. & Hardie, J. 2006. Host plant selection by aphids:
            Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51: 309-330.
  
           Pyati,
            P., Bandani, A.R., Fitches, E. & Gatehouse, J.A. 2011. Protein digestion in
            cereal aphids (Sitobion avenae) as a target for plant defence by
            endogenous proteinase inhibitors. Journal
              of Insect Physiology 57(7):
            881-891.
  
           Roy,
            S.S., Dasgupta, R. & Bagchi, A. 2014. A review on phylogenetic analysis: A
            journey through modern era. Computational
              Molecular Bioscience 4:
            39-45.
  
           Shafqat,
            J. & Afroz, A. 2024a. RNA interference of Sitobion avenae voltage-gated sodium channels for improved grain aphid resistance. International
              Journal of Tropical Insect Science 44: 1679-1689.
            doi.10.1007/s42690-024-01261-1
  
           Shafqat,
            J. & Afroz, A. 2024b. Differential protein expression analysis of wheat
            cultivars and grain aphids post-feeding. Journal of Tianjin University
              Science and Technology 57(1): 143-164. doi.10.5281/zenodo.10612560
  
           Smith,
            C.M. & Chuang, W.P. 2014. Plant resistance to aphid feeding: Behavioral,
            physiological, genetic and molecular cues regulate aphid host selection and
            feeding. Pest Management Science 70(4): 528-540.
  
           Sreelatha,
            E., Sharma, H. & Gowda, C. 2018. Tolerance as mechanism of resistance to Helicoverpa
              armigera (Hub.) in Chickpea (Cicer arietinum Linn.). Trends in Biosciences 11(2): 144-148.
  
           Tabari,
            M., Fathi, S., Nouri-Ganbalani, G., Moumeni, A. & Razmjou, J. 2017.
            Antixenosis and antibiosis resistance in rice cultivars against Chilo
              suppressalis (Walker)(Lepidoptera: Crambidae). Neotropical Entomology 46: 452-460.
  
           Vellichirammal,
            N.N., Gupta, P., Hall, T.A. & Brisson, J.A. 2017. Ecdysone signaling
            underlies the pea aphid transgenerational wing polyphenism. Proceedings of the National Academy of
              Sciences 114(6): 1419-1423.
  
           Wains,
            M.S., Javaid, M.M., Afzal, M.B.S., Ali, H.A., Sarfraz, M., Banazeer, A.,
            Hussain, F. & Aslam, M.N. 2023. Surveillance and evaluation of climatic
            factors on varietal screening against aphid population in wheat. Pakistan Journal of Biotechnology 20(02): 371-375.
  
           Webster,
            B. 2012. The role of olfaction in aphid host location. Physiological Entomology 37(1):
            10-18.
  
           Wyatt,
            I. & White, P. 1977. Simple estimation of intrinsic increase rates for
            aphids and tetranychid mites. Journal of
              Applied Ecology 14(3): 757-766.
  
           Xu, W.
  & Han, Z. 2008. Cloning and phylogenetic analysis of sid-1-like genes from
            aphids. Journal of Insect Science 8: 1-6.
  
           Xue,
            W., Fan, J., Zhang, Y., Xu, Q., Han, Z., Sun, J. & Chen, J. 2016.
            Identification and expression analysis of candidate odorant-binding protein and
            chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS ONE 11(8): e0161839.
  
           Yu, X.,
            Wang, G., Huang, S., Ma, Y. & Xia, L. 2014. Engineering plants for aphid
            resistance: Current status and future perspectives. Theoretical and Applied Genetics 127: 2065-2083.
  
           Yu,
            X.D., Liu, Z.C., Huang, S.L., Chen, Z.Q., Sun, Y.W., Duan, P.F., Ma, Y.Z. &
            Xia, L.Q. 2016. RNAi‐mediated plant protection against aphids. Pest Management Science 72(6): 1090-1098.
  
           Zeb,
            Q., Naeem, M., Khan, S.A. & Ahmad, S. 2016. Effect of insecticides on the
            population of aphids, natural enemies and yield components of wheat. Pakistan Journal of Zoology 48(6): 1839-1848.
  
           Zhang,
            N., Liu, D., Zhai, Y., Li, X. & Simon, J.C. 2022. Functional divergence of
            three glutathione transferases in two biotypes of the English grain aphid, Sitobion
              avenae. Entomologia Experimentalis et
                Applicata 170(1): 79-87.
  
           Zhang,
            Y., Fan, J., Francis, F. & Chen, J. 2018. Molecular characterization and
            gene silencing of Laccase 1 in the grain aphid, Sitobion avenae. Arch. Insect
              Biochem. Physiol. 97(4): e21446. https://doi.org/10.1002/arch.21446
  
           Zhang,
            M., Zhou, Y., Wang, H., Jones, H.D., Gao, Q., Wang, D., Ma, Y. & Xia, L.
            2013. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on
            wheat plants. BMC Genomics 14: 560.
  
           
             
           *Pengarang untuk
            surat-menyurat; email: dramber.afroz@uog.edu.pk
  
                       
             
             
             
             
               
             
               
            
           
            
           
           
          
          
           
         
            
          
           
          
           
           |