| Sains Malaysiana 53(5)(2024): 995-1007
          
         http://doi.org/10.17576/jsm-2024-5305-02
            
           
             
           Pencirian
            Geohazad Tanah Runtuh Pendam Lama di Kawasan Bukit Fraser, Pahang
              
           (Geohazard
            Characterization of Long Latent Landslides in the Fraser’s Hill Area, Pahang)
  
           
             
           NUR SYARIENNA
            RAZMI, MOHD ROZI UMOR*, MOHD HARIRI ARIFIN, NORBERT SIMON, NORASIAH SULAIMAN
  & NOR SHAHIDAH MOHD NAZER
  
           
             
           Program Geologi,
            Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi,
            
            Universiti Kebangsaan Malaysia, 43600 UKM
            Bangi, Selangor, Malaysia
            
           
             
           Diserahkan: 22
            September 2023/Diterima: 8 April 2024
            
           
             
           AbstraK
            
         Bukit Fraser terletak di kawasan berbukit
            di Malaysia, kewujudan tanah runtuh pendam lama menimbulkan kebimbangan. Objektif kajian ini adalah untuk
              memperoleh pemahaman menyeluruh tentang keadaan tanah runtuh pendam lama
              melalui integrasi empat pendekatan utama iaitu analisis topografi, pemetaan
              lapangan, analisis petrografi dan kaedah keberintangan geoelektrik. Gabungan
              kesemua kaedah ini bertujuan untuk mengumpulkan data yang diperlukan bagi
              menggambarkan dengan tepat morfologi, sifat geologi dan keadaan subpermukaan. Lima
            garis tinjauan keberintangan geoelektrik telah dijalankan di pelbagai lokasi di
            sekitar kawasan Bukit Fraser. Bukit Fraser dicirikan oleh batuan granit sebagai
            unit geologi utama. Jenis batu, jenis tanah, tanah baki, zon tanah runtuh, zon
            sesar dan kehadiran jasad air yang ditentukan berdasarkan nilai keberintangan
            iaitu batu dasar granit (> 2000 Ωm), jenis tanah termasuk lempung dan
            lodak (50 - 200 Ωm), zon tanah runtuh (<100 Ωm), tanah baki (200 -
            2000 Ωm), zon sesar (200 - 500 Ωm) dan jasad air (<100 Ωm).
            Zon tanah runtuh pendam lama ditafsirkan berdasarkan peta topografi dan data Interferometric Synthetic Aperture Radar (ifSAR). Sebanyak 81 lokasi tanah runtuh terletak
              di zon tanah runtuh pendam lama direkodkan dari Januari 2021 hingga Mac 2022.
              Analisis petrografi dilakukan ke atas lima sampel batuan menunjukkan bahawa
              canggaan berlaku pada batuan, mineral yang terluluhawa, feldspar dihancurkan
              dan kuarza dihancurkan menjadi butiran kecil. Kesimpulannya, analisis topografi
              menunjukkan zon tanah runtuh pendam lama di kawasan kajian mengikut ciri
              seperti kerawang di bahagian kepala, cerun cekung di bahagian tengah serta
              topografi cembung dan morfologi seperti bentuk sudu. Maklumat ini membantu
              dalam kerja lapangan, analisis petrografi dan kaedah keberintangan geoelektrik.
              Analisis petrografi membantu memahami canggaan dan mineral. Kajian keberintangan
              geoelektrik telah dijalankan menggunakan zon yang ditafsirkan, tetapi hasil
              profil subpermukaan menunjukkan hanya garis tinjauan FH2 dan FH4 terletak di
              dalam zon tanah runtuh pendam lama.
              
 
             
           Kata kunci: Keberintangan geoelektrik; petrografi;
            tanah runtuh pendam lama   AbstraCT
            
       Fraser's Hill is
            in a hilly area, the existence of old dormant landslide raises concerns. The
            objective of this study was to obtain a comprehensive understanding of the
            conditions of the old dormant landslides through the integration of four main
            approaches, namely topographic analysis, field mapping, petrographic analysis
            and geoelectrical resistivity methods. The combination of these methods is
            intended to collect the necessary data to describe the morphology, geological
            properties, and subsurface conditions accurately. Five lines of geoelectrical
            resistivity surveys were conducted at various locations around Fraser’s Hill.
            Granitic rocks characterise Fraser's Hill as a major geological unit. Rock
            type, soil type, residual soil, landslide zone, fault zone and the presence of
            water bodies are determined based on the resistivity values, namely granite
            bedrock (> 2000 ° m), soil types including loam and loam (50-200 Ωm),
            landslide zone (<100 Ωm), residual soil (200-2000 Ωm), fault zone
            (200-500 Ωm) and water body (<100 Ωm). The old latent landslide
            zone was interpreted based on topographic maps and Interferometric Synthetic
            Aperture Radar (ifSAR) data. A total of 81 landslide locations located in the
            old dormant landslide zone were recorded from January 2021 to March 2022.
            Petrographic analysis carried out on five rock samples showed that collisions
            occurred in rocks, weathered minerals, feldspar, and quartz, which were crushed
            into small grains. In conclusion, topographic analysis showed a zone of old
            dormant landslides in the study area according to characteristics such as
            arcuate crown, concave upper slope and convex lower slope and morphology such
            as spoon shape. This information helps in fieldwork, petrographic analysis and
            geoelectrical resistivity methods. Petrographic analysis helps to understand
            the structure and geology. Geoelectrical resistivity studies were conducted
            using interpreted zones, but subsurface profiling results showed that only the
            FH2 and FH4 survey lines were located within the old dormant landslide zone.
            
         
             
           Keywords:
            Geoelectrical resistivity; old dormant landslide; petrographic
            
           
             
           rUJUKAN
            
         Abdul Qayyum
            Jalal. 2018. Survei keberintangan geoelektrik dan pengkutuban teraruh serta
            pemetaan taburan kegagalan cerun di sekitar Bukit Fraser, Pahang. Universiti
            Kebangsaan Malaysia.
            
         Abdul Rashid
            Abdul Rahman. 2021. 60 kesan runtuhan sepanjang 30km. Kosmo. Raub.
  
           Abdul Samad
            Abdul Rahman, Mohd Jamaludin Md Noor, Norbaya Sidek & Ismacahyadi Bagus
            Mohd Jais, J.A. 2018. Shear strength of granitic residual soil in saturated and
            unsaturated conditions. AIP Conference Proceedings. hlm. 1-9.
  
           Ahmad Sanadi
            Abu Bakar & Zaini Hamzah, A.S. 2017. Measurements of natural radioactivity
            in soil of Fraser’s Hill, Pahang, Malaysia. AIP Conference Proceedings.
            hlm. 1-10.
  
           Alemayo, G.G.
  & Eritro, T.H. 2021. Landslide vulnerability of the Debre Sina-Armania road
            section, Central Ethiopia: Insights from geophysical investigations. Journal
              of African Earth Sciences 184: 104383.
  
           Aleotti, P.
  & Chowdhury, R. 1999. Landslide hazard assessment: Summary review and new
            perspectives. Bulletin of Engineering Geology and the Environment 58(1):
            21-44.
  
           Amir
            Noviyanto, Junun Sartohadi & Benito Heru Purwanto. 2020. The distribution
            of soil morphological characteristics for landslide-impacted Sumbing Volcano,
            Central Java - Indonesia. Geoenvironmental Disasters 7: 25.
  
           Anon. 2021.
            Notis penutupan jalan di FT056 Jalan GAP - Bukit Fraser.
            https://www.facebook.com/JkrDaerahHuluSelangor/posts/notis-penutupan-jalan-di-ft056-jalan-gap-bukit-fraser/280099597476969/
            (akses pada 24 Disember 2021).
            
           Bai, S. &
            Lu, P. 2021. Modern reactivations of a thick colluvial landslide reconstructed
            from dendrochronology: The example of the Xiakou landslide, China. Land
              Degradation and Development 32(7): 2271-2286.
  
           Bera, S.,
            Upadhyay, V.K., Guru, B. & Oommen, T. 2021. Landslide inventory and
            susceptibility models considering the landslide typology using deep learning:
            Himalayas, India. Natural Hazards 108(1): 1257-1289.
  
           Bernama.
            2021a. 60 runtuhan dikesan halang laluan di Bukit Fraser. Bukit Fraser, Pahang.
            https://www.astroawani.com/berita-malaysia/60-runtuhan-dikesan-halang-laluan-di-bukit-fraser-276079
            (akses pada 20 Jun 2022).
            
           Bernama.
            2021b. Tanah runtuh di Bukit Fraser, 13 kenderaan terkandas.
            https://www.sinarharian.com.my/article/117437/EDISI/Tanah-runtuh-di-Bukit-Fraser-13-kenderaan-terkandas
            (akses pada 20 September 2021).
            
           Binley, A.
  & Slater, L. 2020. Field scale data acquisition. Resistivity and Induced
    Polarization: Theory and Applications to the Near-Surface Earth., Edisi
            ke-1. United Kingdom: Cambridge University Press. hlm. 154-168.
  
           Carrara, A. 1993. Uncertainty in evaluating
            landslide hazard and risk. In Prediction and Perception of Natural Hazards.
              Advances in Natural and Technological Hazards Research, vol 2, edited by
            Nemec, J., Nigg, J.M. & Siccardi, F. Dordrecht: Springer. hlm. 101-109.
  
 Durgin, P.B.
            1977. Landslides and the weathering of granitic rocks. GSA Reviews in
              Engineering Geology 3: 125-131.
  
           Er, A.C.,
            Chong, S.T., Ahmad, H., Sum, S.M. & Ramli, Z. 2013. The sustainability of
            Fraser’s Hill as an eco-destination. International Journal of Business
              Tourism and Applied Sciences 1(2): 109-115.
  
           Esposito, G.,
            Carabella, C., Paglia, G. & Miccadei, E. 2021. Relationships between
            morphostructural/geological framework and landslide types: Historical
            landslides in the hilly piedmont area of abruzzo region (central Italy). Land 10: 1-28.
  
           Gobbet, D.J.
  & Hutchinson, C. 1973. Geology of the Malay Peninsula (West Malaysia and
    Singapore). New York: Wiley-Interscience.
  
           Guzzetti, F.,
            Carrara, A., Cardinali, M. & Reichenbach, P. 1999. Landslide hazard
            evaluation: A review of current techniques and their application in a
            multi-scale study, Central Italy. Geomorphology 31: 181-216.
  
           Hirata, Y.
  & Chigira, M. 2019. Landslides associated with spheroidally weathered
            mantle of granite porphyry induced by 2011 Typhoon Talas in the Kii Peninsula,
            Japan. Engineering Geology 260: 1-8.
  
           Hussain, Y.,
            Cardenas-Soto, M., Martino, S., Moreira, C., Borges, W., Hamza, O., Prado, R.,
            Uagoda, R., Rodríguez-Rebolledo, J., Silva, R.C. & Martinez-Carvajal, H.
            2019. Multiple geophysical techniques for investigation and monitoring of
            Sobradinho Landslide, Brazil. Sustainability (Switzerland) 11(23): 1-18.
  
           Hutchinson, J.
            1995. Keynote paper: Landslide hazard assessment. Proceedings of the Sixth
              International Symposium on Landslides, Christchurch, New Zealand, disunting
            oleh Balkema, A.A. Christchurch: Rotterdam. hlm. 1805-1841.
  
           Hutchison,
            C.S. 2014. Tectonic evolution of Southeast Asia. Bulletin of the Geological
              Society of Malaysia 60: 1-18.
  
           Imani, P.,
            Tian, G., Hadiloo, S. & El-Raouf, A.A. 2021. Application of combined
            electrical resistivity tomography (ERT) and seismic refraction tomography (SRT)
            methods to investigate Xiaoshan District landslide site: Hangzhou, China. Journal
              of Applied Geophysics 184: 1-13.
  
           Imau, V.K.,
            Rosniza Aznie Che Rose & Norela Sulaiman. 2018. Penilaian kepuasan
            pelancong terhadap ekopelancongan di Bukit Fraser menggunakan model
            importance-performance analysis (IPA). Geografi 6(2): 29-41.
  
           Jovančević,
            S.D., Peranić, J., Ružić, I. & Arbanas, Ž. 2016. Analysis of a
            historical landslide in the Rječina River Valley, Croatia. Geoenvironmental
              Disasters 3(1): 1-9.
  
           Keller, G.V.
  & Frischknecht, F.C. 1966. Electrical Methods in Geophysical
    Prospecting. Oxford: Pergamon Press.
  
           Khazaradze,
            G., Guinau, M., Blanch, X., Abellán, A., Tapia, M., Furdada, G. & Suriñach,
            E. 2020. Multidisciplinary studies of the Puigcercós historical landslide in
            the Catalan Pyrenees. EGU General Assembly hlm. 1-56.
  
           Lahai, Y.A.,
            Anderson, K.F.E., Jalloh, Y., Rogers, I. & Kamara, M. 2021. A comparative
            geological, tectonic and geomorphological assessment of the Charlotte, Regent
            and Madina landslides, Western area, Sierra Leone. Geoenvironmental
              Disasters 8(16): 1-17.
  
           Loke, M.H.,
            Acworth, I. & Dahlin, T. 2003. A comparison of smooth and blocky inversion
            methods in 2D electrical imaging surveys. Exploration Geophysics 34(3):
            182-187.
  
           Mengistu, F.,
            Suryabhagavan, K.V., Raghuvanshi, T.K. & Lewi, E. 2019. Landslide hazard
            zonation and slope instability assessment using optical and InSAR data: A case
            study from Gidole Town and its surrounding areas, Southern Ethiopia. Remote
              Sensing of Land 3(1): 1-14.
  
           Mita, M.,
            Glazer, M., Kaczmarzyk, R., Dąbrowski, M. & Mita, K. 2018. Case study
            of electrical resistivity tomography measurements used in landslides
            investigation, Southern Poland. Contemporary Trends in Geoscience 7(1):
            110-126.
  
           Mohamad Anuri
            Ghazali, Abd Ghani Rafek, Kadderi Md Desa & Suhaimi Jamaluddin. 2013.
            Effectiveness of geoelectrical resistivity surveys for the detection of a
            debris flow causative water conducting zone at KM 9, Gap-Fraser’s Hill Road (FT
            148), Fraser’s Hill, Pahang, Malaysia. Journal of Geological Research 2013: 1-11.
  
           Mohamed, A.A.,
            Rahim, S.A., Aitman, D.A., Khairul, M. & Kamarudin, A. 2016. Analisis
            kandungan karbon organik tanah secara bermusim di Hutan Bukit Jeriau, Fraser
            Hill, Pahang. Malaysian Journal of Analytical Sciences 20(2): 452-460.
  
           Ntieche, B.,
            Nguet, P.W., Nchouwet, Z., Mounjouohou, M.A. & Mfepat, D. 2020. Deformation
            features and structures in some igneous and metamorphic rocks: A case study of
            Central African Fold Belt in Cameroon. In Geochemistry, edited by René,
            M., Aiello, G. & El Bahariya, G. IntechOpen.
              doi:10.5772/intechopen.93201
  
 Ojeda,  d.P.S., Sanz, E. & Galindo, R. 2021.
            Historical reconstruction and evolution of the large landslide of Inza
            (Navarra, Spain). Natural Hazards 109(3): 2095-2126.
  
           Pazzi, V.,
            Morelli, S. & Fanti, R. 2019. A review of the advantages and limitations of
            geophysical investigations in landslide studies. International Journal of
              Geophysics 2019: 1-27.
  
           Roe, F.W.
            1951. The Geology and Mineral Resources of the Fraser’s Hill Area Selangor,
              Perak and Pahang, Federation of Malaya, with an Account of the Mineral
              Resources. Kuala Lumpur: Caxton Press Ltd.
  
           Rosniza Aznie,
            C.R., Nor Hasyifa, A., Rosmiza, M.Z. & Zaini, S. 2016. Pengurusan rekreasi
            di pusat tumpuan Bandar Bukit Fraser. Journal of Social Sciences and
              Humanities Special Issue 1: 88-96.
  
           Saffari, P.,
            Nie, W., Noor, M.J.M., Zhang, X. & Liang, Q. 2019. Characterization the
            geotechnical properties of a Malaysian granitic residual soil grade v. IOP
              Conference Series: Earth and Environmental Science 289(1): 1-12.
  
           Streckeisen,
            A. 1976. To each plutonic rock its proper name. Earth Science Reviews 12(1): 1-33.
  
           Tajul Anuar
            Jamaluddin. 2019. Pengecaman geobahaya tanah runtuh pendam di tanah tinggi
            tropika - Beberapa contoh dari Cameron Highland dan Kundasang, Malaysia. National
              Geoscience Conference 2019. hlm. 1-2.
  
           Tajul Anuar
            Jamaluddin, Norasiah Sulaiman & Nor Shahidah Mohd Nazer. 2020. Penilaian
            geomorfologi tanah runtuh lama di tanah tinggi tropika – Kajian kes Cameron
            Highlands dan Kundasang, Malaysia. Bulletin of the Geological Society of
              Malaysia 69: 111-124.
  
           The
            International Geotechnical Societies’ UNESCO Working Party on World Landslide
            Inventory. 1990. A suggested method for reporting a landslide. Bulletin of
              the International Association of Engineering Geology - Bulletin de
              l’Association Internationale de Géologie de l’Ingénieur 41(1): 5-12.
  
           Wang, R.,
            Zhang, K., Ning, Y., Xu, W., Wang, W. & Qin, J. 2021. Reactivation of
            ancient landslide deposits: Geological characteristics and deformation
            mechanism. Advances in Civil Engineering 2021: 6614180.
  
           Wu, S., Zhao,
            R., Liao, L., Yang, Y., Wei, Y. & Wei, W. 2022. Failure mode of
            rainfall-induced landslide of granite residual soil, southeastern Guangxi
            Province, China. Earth Surface Dynamics 10(6): 1079-1096.
  
           
             
           *Pengarang
            untuk surat-menyurat; email: mohdroziumor@gmail.com
  
 
             
             
               
             
               
            
           
            
           
           
          
          
           
         
            
          
           
          
           
           |