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ABSTRACT

The classic charting procedures for designing the estimated process parameters-based variable sample size (VSS)  chart rely on 
the average run length (ARL) criterion. Nevertheless, variations in the number of Phase-I samples and sample size, as well as the 
magnitude of the process mean shift affect the skewness of the run-length distribution for a control chart. Hence, we claim that 
the ARL can be a misleading metric when adopted in the estimated process parameters-based control charts. Instead, examining 
percentiles of the run-length distribution, which focus on the run-length behaviour, are more realistic and intuitive. From this 
point of view, this paper aims to develop two new optimal VSS  charts using estimated process parameters, by minimising the 
(i) median run length (MRL) and (ii) expected MRL criteria, for known and unknown shift-size cases, respectively. Besides, the 
5th and 95th percentiles are computed to closely examine the variability of the run length. In this paper, two VSS schemes that 
involve estimated process parameters are investigated extensively, i.e., the first sample size can be either small or large. Various 
practically manageable Phase-I sample sizes and magnitudes of process mean shift are implemented in the optimal design of the 
proposed charts. The results ascertain that the proposed optimal VSS  charts based on estimated process parameters not only 
provide a comprehensible interpretation for quality practitioners, but also give a low false-alarm rate. The proposed optimal charts 
are illustrated using real data from a wafer substrate manufacturing company.
Keywords: median run length; optimal design; percentile of the run-length distribution; process parameter estimation; variable 
sample size  chart

ABSTRAK

Prosedur carta klasik untuk mereka carta  bersaiz sampel berubah-ubah (VSS) berdasarkan anggaran parameter proses adalah 
bergantung pada kriteria panjang larian purata (ARL). Namun begitu, variasi dalam bilangan sampel Fasa-I dan saiz sampel, 
serta magnitud anjakan purata proses mempengaruhi kepencongan taburan panjang larian untuk carta kawalan. Oleh itu, kami 
berpendapat bahawa ARL merupakan metrik yang mengelirukan apabila digunakan dalam carta kawalan berdasarkan parameter 
proses yang dianggarkan. Sebaliknya, pemeriksaan percentil taburan panjang larian yang memberi tumpuan kepada tingkah laku 
panjang larian adalah lebih realistik dan intuitif. Dari sudut pandangan ini, kajian ini bertujuan untuk mencipta dua reka bentuk 
optimum baharu bagi carta VSS  berdasarkan parameter proses yang dianggarkan dengan meminimumkan kriteria masing-
masing untuk (i) panjang larian median (MRL) dan (ii) jangkaan MRL untuk kes perubahan saiz anjakan yang diketahui dan 
tidak diketahui. Selain itu, percentil ke-5 dan ke-95 dikira dengan teliti untuk mengukur variabiliti dalam panjang larian. Dalam 
kajian ini, dua skim VSS yang melibatkan parameter proses yang dianggarkan dikaji dengan secara mendalam, iaitu, saiz sampel 
pertama adalah sama dengan kecil atau besar. Pelbagai saiz sampel Fasa-I yang mudah diurus dan magnitud anjakan purata proses 
digunakan dalam reka bentuk optimum carta yang dicadangkan. Hasil kajian kami menunjukkan bahawa carta VSS  optimum 
yang dicadangkan berdasarkan parameter proses yang dianggarkan bukan sahaja memberikan tafsiran yang komprehensif 
kepada pengamal kualiti, tetapi juga memberikan kadar amaran palsu yang rendah. Carta optimum yang dicadangkan 
diilustrasikan dengan menggunakan data sebenar daripada sebuah syarikat pembuatan substrat wafer. 
Kata kunci: Anggaran proses parameter; carta  bersaiz sampel berubah-ubah; panjang larian median; reka bentuk 
optimum; taburan peratusan panjang larian
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INTRODUCTION

Quality control charts, a fundamental technique in 
statistical process control (SPC), serve as powerful tools 
for the real-time monitoring of processes. They are widely 
adopted to ascertain if a production process is operating 
in a stable and statistically controlled state. In practical 
applications, process parameters are hardly known with 
absolute certainty. Typically, process monitoring involves 
two distinct phases, which are Phase-I and Phase-II. During 
the Phase-I analysis, quality control charts are employed 
comprehensively to evaluate the process stability and 
capability. From the stable Phase-I process data, the in-
control process parameters, i.e., μ0 and σ0, which indicate 
the population mean and standard deviation, respectively, 
are estimated. Phase-II analysis employs control charts to 
continuously monitor the process as new data are collected 
successively over time, facilitating the identification of any 
process changes during this prospective monitoring.

In most situations, practitioners seek to estimate μ0 
and σ0 from a small set of Phase-I samples, so that the 
subsequent process monitoring can commence promptly in 
the Phase-II stage. However, as discussed by several SPC 
scholars (Chong et al. 2024; Shepherd, Champ & Rigdon 
2016), employing a small set of Phase-I samples for 
process parameters estimation can significantly impact the 
functionality and capability of control charts. To circumvent 
this issue, an increasing effort is being placed on developing 
new control charting parameters for the quality control 
charts that incorporate estimated process parameters. Some 
of the works include the variable sample size (VSS)  chart 
(Castagliola, Maravelakis & Figueiredo 2012), the double 
sampling (DS)  chart (Teoh et al. 2015), the exponentially 
weighted moving average (EWMA) median chart 
(Castagliola et al. 2016), the triple sampling  chart (Mim 
et al. 2022), and the sequential probability ratio test (SPRT) 
chart (Teoh et al. 2024). Jensen et al. (2006) hypothesised 
that process parameter estimation substantially influences 
the control charts using VSS and variable sampling interval 
(VSI) schemes due to their enhanced sensitivity to small 
shifts. In the VSS chart, the sample size ( ) can be adjusted 
across different levels, with the control-limit coefficient 
and sampling interval remaining unchanged. Compared to 
the VSI with fixed time  chart, Reynolds (1996) claimed 
that significant improvements are achieved for the VSS  
chart for identifying small levels of shifts in process mean. 
Lately, the VSS run sum (RS) chart, introduced by Yeong 
et al. (2022), offers an enhanced approach for monitoring 
the coefficient of variation (CV). The VSS RS chart 
surpasses the traditional RS CV chart and demonstrates 
effectiveness in monitoring the weights of discarded zinc 
alloy material. Moreover, Lim et al. (2024) developed 
the VSS side-sensitive synthetic CV control chart, which 
establishes superior performance relative to the VSS RS 
and VSS EWMA CV charts, particularly in the case of 
moderate to large levels of process shift sizes. This chart 
also shows efficiency in tracking the sintering process 

in manufacturing environments. Given the benefits and 
widespread industrial applications of VSS-type charts, this 
paper explores the estimated process parameters-based 
VSS  chart.

Among current SPC studies, there is an overemphasis 
on the average run length (ARL) as the primary performance 
and design indicator for control charts that use estimated 
process parameters. Focusing solely on the ARL measure 
is detrimental and not meaningful, especially for control 
charts using estimated process parameters (Teoh et al. 
2014; Epprecht, Loureiro & Chakraborti 2015; Lee et al. 
2023). This paper extensively shows that the shape and 
skewness of the run-length distribution for the VSS  chart 
using estimated process parameters, alter with the number 
of Phase-I samples m and sample sizes , as well as the 
magnitude of shift sizes δ. Also, findings in Section 3 of 
this paper indicate that the ARL-based VSS  chart when 
using estimated process parameters exhibits high false 
alarm rates. Undoubtedly, this degraded chart performance 
will affect practitioners’ confidence. Looking at these 
arising problems, it is a high time that the alternative chart 
design criterion needs to be proposed for the VSS  chart 
that involves estimated process parameters. Numerous 
SPC scholars, namely Chakraborti (2007), Chong et al. 
(2022), Karimi et al. (2023), and Zhou et al. (2012) have 
argued that percentiles of the run-length distribution offer 
practitioners more practical advantages as they deliver 
useful and essential insights into the actual and expected 
run length (RL) behaviour. Along this line, the median run 
length (MRL), i.e., the 50th percentile of the run-length 
distribution, often proves to be a fair choice for representing 
central tendency (Teh et al. 2015). The reason is that, in 
right-skewed distributions, the median usually falls below 
the mean. Additionally, because of its robustness property, 
the median is considerably less influenced by outliers. 
With these advantages as motivation, Teoh et al. (2016), 
You et al. (2016), Gao et al. (2019), and Qiao et al. (2022), 
have recommended using the MRL criterion as the key 
performance and design metric for control charts.

Since the MRL provides a more useful piece of 
information compared to the ARL, it is used as an 
alternative design criterion for the VSS  chart that uses 
estimated process parameters. In real-life scenarios, it is 
uncommon to have precise knowledge of both process 
parameters and future process changes. Given these 
issues, an analysis of control charts methodologies that 
involves estimated process parameters for unknown shift-
size conditions is vitally viewed. Therefore, this paper 
proposes two new optimal statistical designs for the 
VSS  chart using estimated process parameters, i.e., by 
minimising (i) the out-of-control MRL (MRL1) and (ii) 
the out-of-control expected MRL (EMRL) metrics, for 
known and unknown shift-size cases, respectively. Note 
that optimisation frameworks and algorithms for the VSS 

 chart, focused on estimated process parameters and 
minimising the out-of-control ARL (ARL1) was discussed 
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by Castagliola et al. (2012). However, they only explore 
a single VSS scheme, i.e., the predefined first subgroup  
( ) is the small sample size ( ). The added merit of this 
paper is that we consider two VSS schemes for the VSS  
chart using estimated process parameters. These two VSS 
schemes include  and , with  denoting 
the larger sample size and . Note that selecting 

 (i.e., small sample size for the first subgroup) 
allows the chart to maintain efficiency during the initial 
stage of process monitoring, while choosing  (i.e., 
large sample size for the first subgroup) provides a stronger 
foundation to enhance the early identification of large 
shifts in the process. This  feature is similar to the 
fast initial response in control charts, where a larger initial 
sample size enhances the ability to detect significant shifts.  

This paper is arranged in the following sequence. 
First, we outline the properties of the RL for the VSS 

 chart using estimated process parameters. Next, we 
conduct performance evaluations for the VSS  chart 
using estimated process parameters based on the ARL 
metric. We then develop MRL and EMRL optimisation 
algorithms for the VSS  charts using estimated process 
parameters. Afterwards, the proposed optimal VSS  chart 
using estimated process parameters, is applied to real-life 
data from a wafer manufacturing company. Last, this paper 
ends with some concluding remarks.

THE VSS  CHART USING ESTIMATED PROCESS 
PARAMETERS

The main discussion of this section focuses on the VSS 
 chart using estimated process parameters. Readers 

can seek information on the construction of the VSS 
 chart using known process parameters from Teoh et 

al. (2017). In practice, the μ0 and σ0 are often estimated 
using Phase-I data as both parameters are unknown. In the 
Phase-I data, m distinct samples are collected, each sample 
containing  individual observations, which are denoted as  
{ , , …, }, where  = 1, 2, …, m. We assume , 
for  = 1, 2, …, , as being independent within each sample 
and across samples, and following a normal distribution, 
i.e., . In this context, μ0 and  denotes the in-
control mean and variance, respectively. The grand mean, 
often denoted as , is a frequently employed estimator for 
μ0. This estimator is calculated using the formula

              
,                        (1)

where  represents the mean of the  
th sample for the Phase-I data. In the estimation of σ0, the 

pooled estimator  is widely adopted, which is given as 

        
.         (2)

Let { , , …, }, for  = 1, 2, …, represents the 
quality characteristic taken from the Phase-II process. 
Assume that , for  = 1, 2, …, , and  { , }, is 
independent and normally distributed, i.e., 
. Hence, the plotting statistic ( ) associated with the  
sample corresponds to

               
,                           (3)

where . Let δ be the standardised 
mean shift size. When δ = 0, the process is 
considered statistically in-control, conversely, if  
δ ≠ 0, it is deemed statistically out-of-control. By definition, 

. Note that  conforms to a standard normal 
 distribution if δ = 0. Note that the selection of  

{ , } in Equation (3) demonstrates the adaptability of 
the VSS mechanism. Specifically,  is utilised under stable 
conditions to ensure efficiency, while  is employed when 
increased sensitivity to shifts is required.

Figure 1 shows the schematic representation of 
the operation for the VSS  chart. From Figure 1, the 
VSS  chart is partitioned into the central region (   
[–W, W]), the warning region (  [–K, –W)  (W, K]), and 
the out-of-control region  = (– , –K)  (K, ). The 
VSS  chart operates through the following procedures:

Step 1 Calculate the control limits of W and K. 

Step 2 Draw a random sample with size  and determine 
the sample statistic,  as in Equation (3).

Step 3 Deduce that the process is in a statistically in-control 
condition if , thus, collect  for the next 
sample. 

Step 4 Deduce that the process continues to be statistically 
in-control if , thus, collect  for the next 
sample to reinforce control. 

Step 5 Generate an out-of-control status if , then, 
search and omit potential assignable causes.

As detailed by Costa (1994), the matrix  of transient 
probabilities for the VSS  chart can be obtained through 
the 3 × 3 transition probability matrix P as described 
below:

   ,   
(4)

where 0 = (0, 0)T. Note that in matrix P, the initial two 
states are considered as transient states, whereas the third 
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state is identified as an absorbing state. The conditional 
probabilities  and  for  { , } in 
Equation (4) are formulated as (Castagliola et al. 2012) 

      

                  ,
(5)

and

    
(6)             

                      ,

respectively, where  represents the cdf for the 
standard normal distribution. In Equations (5) and 
(6), the random variables U and V are specified as 

 and , respectively. Since  
, then . Thus, the probability 

density function (pdf) of U, denoted as  is given by 
. Here,  signifies the pdf associated 

with the standard normal distribution. Since the random 
variable  follows 
a gamma distribution with parameters  
and , the pdf of V,  equals to 

, where  
denotes the pdf of the gamma distribution. 

The RL represents the number of samples that is 
required by a control chart to produce the first out-of-control 
point. When  and σ0 are unknown, the unconditional run-
length distribution is obtained by averaging the run-length 
distribution across all the feasible values of  and . 
With the use of the conditional approach, we can derive 
formulae for the unconditional probability mass function 
(pmf),  and the cumulative distribution function 
(cdf),  for the VSS  chart based on estimated 
process parameters as follows:

 (7)

and

(8)
         ,

respectively. Here,  {1, 2, 3, …}, q denotes the 2 × 1 
initial probability vector,  represents the 2 × 2 transition 
probability matrix, and  is the 2 × 1 vector satisfying 

, where 1 corresponds to a 2 × 1 vector with 
both entries equal to one. Note that q = (1, 0)T if , 
while q = (0, 1)T if . Note that  and  in 
Equations (7) and (8) follow the same definition as defined 
in the previous paragraph.

As defined by Gan (1993), the value , for  
, corresponds to the (100 )th percentiles of the 

run-length distribution, in which

      and .         (9)

Both Equations (8) and (9) are then utilised to evaluate 
the percentiles of the run-length distribution for the VSS 

 chart. To determine the MRL value, we set  = 0.5 in 
Equation (9), which corresponds to the 50th percentile of 
the run-length distribution.

For situations involving estimated process parameters, 
the mathematical expressions of the unconditional average 
sample size (ASS), ARL, and standard deviation of the run 
length (SDRL), for the VSS  chart are determined from 

   ASS = ,   (10)

   ARL = ,    (11)

and

 SDRL = , (12)

respectively. I in Equations (11) and (12), is the 2 × 
2 identity matrix. Note that the ASS in Equation (10) is 

FIGURE 1. Schematic representation of the VSS chart’s operation

FIGURE 2. The pmf ( ) plots of the VSS chart’s run length when {10, 20, 40, 80,
+ }, ARL0 = 370, ASS0 = = 3 and {0, 0.5, 1.0, 2.0}
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defined based on the assumption of a process operating 
throughout an infinite time period. If , the 3 × 3 
matrix  in Equation (10) is obtained as

, (13)

while if , is given as 

  

. (14)

PERFORMANCE EVALUATION OF THE ARL-BASED VSS  
CHART USING ESTIMATED PROCESS PARAMETERS

Traditionally, the ARL has been employed as a primary 
performance measure for control charts that incorporate 
estimated process parameters. However, there are two 
key concerns associated with relying solely on the ARL 
(Montgomery 2013). The first concern is the very large 
value of the SDRL. The second concern is the highly 
skewed run-length distribution. Castagliola et al. (2012) 
developed the optimal ARL-based VSS  chart that 
involves estimated process parameters, which produces a 
satisfactory in-control ARL (ARL0) value. However, the 
resulting values of in-control SDRL (SDRL0) and out-of-
control SDRL (SDRL1) are quite large compared to their 
corresponding values of ARL0 and out-of-control ARL 
(ARL1), respectively. Such a situation is unfavourable. 
Therefore, this section draws the attention of practitioners 
towards the arising problems of the optimal design for the 
VSS  chart, especially when using the ARL metric with 
estimated process parameters.

Table 1 shows the ARLs, SDRLs, and the 5th  
( ), 25th ( ), 50th (MRL), 75th ( ), and 95th  
( ) percentiles of the run-length distribution for 
the ARL optimised VSS  chart when . Table 
1 also examines multiple compositions of m, , and δ. 
In the upper portion of Table 1, the optimal parameters  
( , , W, K) of the VSS  chart are provided for scenarios 
with both estimated (  {10, 20, 40, 80}) and known  
( ) process parameters. These optimal parameters 
are obtained by minimising the ARL1 (δopt = 1.0), under 
the constraints of ARL0 = 370 and ASS0 = {3, 5}, where 
ASS0 represents the in-control ASS. Here, δopt refers to 
the targeted mean shift that requires rapid detection. The 
optimisation procedure for this ARL-based VSS  chart 
is described in Castagliola et al. (2012). It must be noted 
that using these optimal charting parameters, the ARLs, 
SDRLs, and other percentiles of the run-length distribution 
are evaluated for numerous δ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 
1.5, 2.0, 3.0} in Table 1.

As shown in Table 1, a notable discrepancy between 
ARL and MRL is observed, especially for δ 1.0. 
Obviously, in the in-control scenario (δ = 0), the in-control 
MRL (MRL0) obtained from all the cases are different 

though the same ARL0 = 370 is attained. From Table 1, 
for  = 3, the same ARL0 = 370 is obtained for cases with 
estimated ( {10, 20, 40, 80}) and known ( ) 
process parameters, however, MRL0 {69, 124, 176, 211, 
257} for {10, 20, 40, 80, }. Though the ARL0 is 
the same, it is clear that when m decreases, the values of 
MRL0 decrease, indicating an increase in false alarms. This 
single example demonstrates that the ARL fails to account 
for the rising occurrence of false alarms in cases involving 
estimated process parameters, highlighting that the ARL 
alone may not fully capture the effects of parameter 
estimations on the chart’s overall performance. 

Besides, the usage of ARL as the performance 
measure gives rise to interpretation problems. When  
ARL0 = 370, there is a risk that practitioners could 
misinterpret this ARL0 as a false alarm signal happening 
at the 370th sample, which is observed in half of the cases. 
As a matter of fact, this actual value is positioned at the 
63rd percentile (Table 1) for the known ( ) process 
parameters and it keeps on increasing when m decreases. 
Only the MRL measurement can provide us with stable 
information regarding the 50% of the time. For example, 
when δ = 0 and = 5, the false signal happens considerably 
sooner at the 116th, 172nd, 210th, 232nd, or 257th sample, 
instead of the 370th (ARL0 = 370) sample, for m  {10, 
20, 40, 80, }, in half of the time (Table 1). From 
this point of view, we observe that the present issue with 
interpretation for the scenario of known process parameters 
emerges more serious when dealing with those of estimated 
process parameters, especially with smaller values of 
Phase-I samples m. Consequently, misinterpretation issues 
in a control chart can lead to incorrect decision-making and 
false conclusions about the process state.

With the implementation of the ARL optimisation 
procedure for the VSS  chart in both scenarios of known 
and estimated process parameters, Table 1 shows that 
the lower percentiles, i.e.,  and  of the run-
length distribution for the scenarios of estimated process 
parameters, are shorter than the scenarios of known 
process parameters. At δ = 0, this phenomenon signifies a 
greater occurrence of false alarms in the scenario involving 
estimated process parameters. When  = 3 and δ = 0, an 
early false signal is likely to occur before {21, 42, 
65, 83}th sample for m  {10, 20, 40, 80}, respectively, 
with a probability of 0.25. In contrast, for , the 
early false signal occurs at the 107th sample (Table 1). In 
the SPC context, excessive false signals are unfavourable 
by practitioners. Enormous time and cost may be wasted in 
order to discover non-existent assignable causes, leading to 
expensive failures in the SPC monitoring scheme.

Given that the middle half of the distribution is bounded 
by the quartiles, namely  and , they provide 
valuable insights into the spread, behaviour, skewness, and 
variation of the run-length distribution. Similar insights are 
gained from the extreme percentiles, that are  and 

. Table 1 highlights a substantial disparity between 
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TABLE 1. Exact ARLs, SDRLs, percentile values (5th, 25th, 50th, 75th and 95th percentiles) and the percentages of all the  
RL ≤  ARL0 for the optimal VSS  chart with estimated ( {10, 20, 40, 80}) and known ( ) process 

parameters when 

δ

W

K

2

13

1.7130

2.7564

2

12

1.6821

2.8742

2

13

1.704

2.9402

2

13

1.6907

2.9712

2

13

1.6754

2.9997

3

15

1.4430

2.9052

4

15

1.7249

2.9624

4

15

1.7017

2.9852

4

15

1.6883

2.9938

4

15

1.6753

3.0000
0.0 ARL0

SDRL0

MRL0

370.00

3740.64

4

21

69

226

1337

370.00

1122.26

7

42

124

339

1397

370.00

649.15

11

65

176

421

1335

370.00

439.50

15

83

211

466

1246

370.00

369.53

19

107

257

513

1108

370.00

1212.44

6

39

116

327

1405

370.00

666.33

11

63

172

417

1345

370.00

498.91

15

82

210

465

1253

370.00

429.92

17

94

232

489

1186

370.00

369.5

19

107

257

513

1109
% of RL≤ ARL0 83 77 72 68 63 78 72 68 66 63

0.2 ARL1

SDRL1

MRL1

306.40

3034.70

3

15

49

166

1029

262.49

842.86

5

27

82

232

1001

243.09

451.63

7

40

109

270

895

230.52

321.57

9

49

127

285

792

215.01

214.32

12

62

149

298

643

241.69

882.45

4

20

65

199

935

215.13

429.47

6

31

89

231

810

194.24

285.99

7

39

102

236

682

181.31

223.77

8

43

109

234

597

166.69

166.01

9

48

116

231

498
0.4 ARL1

SDRL1

MRL1

143.98

1656.66

2

7

20

70

468

102.85

370.49

3

10

29

85

391

80.96

163.69

3

13

34

86

300

70.22

102.29

4

15

38

85

243

59.62

58.42

4

18

42

82

176

75.54

347.33

2

6

17

53

286

57.61

129.25

2

9

22

58

217

46.53

71.70

3

10

24

55

163

41.27

51.18

3

10

25

53

135

36.35

35.22

3

11

26

50

107
0.6 ARL1

SDRL1

MRL1

46.29

629.53

2

4

8

22

140

28.57

104.03

2

4

10

24

101

20.45

37.19

2

5

10

22

69

17.48

22.05

2

5

11

21

55

15.00

13.33

2

6

11

20

42

16.48

79.15

2

3

6

13

54

12.96

24.84

2

3

6

14

43

10.69

13.28

2

3

7

13

33

9.73

9.83

2

4

7

12

28

8.89

7.41

2

4

7

12

24
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0.8 ARL1

SDRL1

MRL1

13.08

172.09

1

2

4

9

36

8.74

21.27

1

3

5

9

26

7.02

7.92

2

3

5

8

19

6.48

5.63

2

3

5

8

17

6.04

4.32

2

3

5

8

15

5.00

12.21

1

2

3

5

13

4.52

4.78

1

2

3

5

12

4.16

3.23

1

2

3

5

10

4.01

2.77

1

2

3

5

9

3.87

2.41

1

2

3

5

9
1.0 ARL1

SDRL1

MRL1

5.05

34.89

1

2

3

5

13

4.28

4.65

1

2

3

5

11

3.98

2.88

1

2

3

5

9

3.87

2.51

1

2

3

5

9

3.76

2.24

1

2

3

5

8

2.83

2.25

1

2

2

3

6

2.67

1.65

1

2

2

3

6

2.60

1.41

1

2

2

3

5

2.57

1.32

1

2

2

3

5

2.53

1.24

1

2

2

3

5
1.5 ARL1

SDRL1

MRL1

2.20

1.34

1

1

2

3

5

2.19

1.12

1

2

2

3

4

2.22

1.06

1

2

2

3

4

2.21

1.01

1

2

2

3

4

2.21

0.97

1

2

2

3

4

1.72

0.69

1

1

2

2

3

1.55

0.64

1

1

1

2

3

1.55

0.62

1

1

1

2

3

1.55

0.61

1

1

1

2

3

1.55

0.60

1

1

1

2

2
2.0 ARL1

SDRL1

MRL1

1.57

0.72

1

1

1

2

3

1.60

0.68

1

1

2

2

3

1.63

0.67

1

1

2

2

3

1.64

0.66

1

1

2

2

3

1.65

0.64

1

1

2

2

3

1.31

0.48

1

1

1

2

2

1.16

0.38

1

1

1

1

2

1.16

0.37

1

1

1

1

2

1.16

0.37

1

1

1

1

2

1.16

0.37

1

1

1

1

2
3.0 ARL1

SDRL1

MRL1

1.09

0.29

1

1

1

1

2

1.10

0.30

1

1

1

1

2

1.1

0.31

1

1

1

1

2

1.11

0.31

1

1

1

1

2

1.11

0.312

1

1

1

1

2

1.02

0.13

1

1

1

1

1

1.00

0.04

1

1

1

1

1

1.00

0.04

1

1

1

1

1

1.00

0.04

1

1

1

1

1

1.00

0.04

1

1

1

1

1
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 and , especially in situations where the process 
remains in-control or shows only marginal deviations from 
in-control (referred to as the out-of-control situation). As δ 
decreases, the difference becomes more pronounced. For 
instance, when  = 3,  = 10, and  {0.0, 0.2, 0.4, 0.6}, 
the disparity between  and  is {1333, 1026, 
466, 138}, respectively. When  increases from 3 to 5, the 
run-length distribution of the VSS  chart exhibits similar 
trends under the scenarios of estimated process parameters.

Additionally, Figure 2 shows the plots of pmf  
for the RL of the VSS  chart, considering  {10, 
20, 40, 80, }, ARL0 = 370, ASS0 =  = 3, and  
{0.0, 0.5, 1.0, 2.0}. The plots show that as the value of 
δ increases, the skewness of the run-length distribution 
reduces. Specifically, when δ = 0, the highest skewness 
is observed for the run-length distribution of the VSS 

 chart based on estimated process parameters, while 
the run-length distribution approaches symmetry when  
δ = 2.0. Differences in skewness at various shifts will lead 
to interpretation challenges for practitioners. Therefore, it 
is crucial to introduce more robust measures, such as MRL 
and EMRL, to assess the performance of the run-length 
distribution for the proposed VSS  chart using estimated 
process parameters. The following sections outline the 
development of optimal statistical designs using the MRL 
and EMRL metrics to attain the most effective detection 
speed for both specific and overall shift sizes, respectively.

MRL-BASED OPTIMISATION OF THE VSS  CHART USING 
ESTIMATED PROCESS PARAMETERS

In real-world settings, practitioners seek to identify the 
optimal or best charting parameters for a control chart to 
achieve the most accurate and timely detection of process 
deviations. First, we propose an optimal statistical design 
for the VSS  chart using estimated process parameters, 
which focuses on the minimisation of the MRL1  for 
known shift-size cases. Here, MRL1  refers to the 
out-of-control MRL (MRL1) corresponding to a designated 
process shift size δ opt, aimed at achieving quicker 
detection speeds. Mathematically, the optimal statistical 
design is shown as follows:

         ,         (15)

subject to the constraints

                   ,                           (16)

                   , and                      (17)

             ,             (18)

where  and  represent the prespecified values for the 
in-control MRL and ASS, respectively. In Equation (18), 

 is the maximum sample size, set to 15. This sample 
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FIGURE 2. The pmf ( ) plots of the VSS chart’s run length when {10, 20, 40, 80,
+ }, ARL0 = 370, ASS0 = = 3 and {0, 0.5, 1.0, 2.0}
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size is sufficiently large to identify meaningful process 
mean shifts, while minimising the time and resources 
required for data collection and analysis in an industrial 
setting. The value of  15 is also employed by 
Castagliola et al. (2012) and Hu et al. (2016) in their 
studies. However, in industry applications, researchers 
and practitioners may customise the value of  based 
on the operational needs and performance objectives 
of their specific processes. The steps herewith detail the 
process for determining the optimal charting parameters  
( , , W, K) for the VSS  chart using estimated process 
parameters:

Step 1 Specify the targeted values for , , m, , and 
.

Step 2 Choose a pair of ( , ) that satisfies constraint 
(18). 

Step 3 Utilise a nonlinear equation solver to search the  
(W, K) values that fulfil constraints (16) and (17), when  
δ = 0.

Step 4 Using the predetermined charting parameters  
( , , W, K) from Steps 2 and 3, evaluate the objective 
function MRL1  using Equations (8) and (9), with  

 = 0.5.

Step 5 Perform Steps 2 to 4 repeatedly to find all the 
possible combinations of ( , , W, K) for the VSS  
chart using estimated process parameters when δ = 0, 
which satisfy constraints (16) - (18).

Step 6 Determine the optimal ( , , W, K) combination 
for the VSS  chart using estimated process parameters 
that yields the most minimum MRL1 value for any out-of-
control case (δ ≠ 0).

By applying the MRL optimisation model  
(15) - (18), the corresponding optimal charting parameters 
( , , W, K) for the VSS  chart using estimated process 
parameters can be determined. Tables 2 and 3 present the 
optimal ( , , W, K) parameters for the VSS  chart, 
and the corresponding ( , MRL, ) values, when 

 {10, 20, 40, 80, }, MRL0 =  = 250, ASS0 =  
 {3, 5, 7, 9} and  {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0} 

for  and , respectively. As a numeric 
example, from Table 2, for  = 3, and  = 0.4, the 
VSS  chart with m = 20 is optimised for the charting 
parameters ( , , W, K) = (1, 15, 1.5130, 3.1100) and 
its corresponding ( , MRL1, ) = (3, 36, 730). This 
also means that the chart is capable of signalling a process 
mean shift by the 3rd, 36th, and 730th samples, respectively, 
in 5%, 50%, and 95% of the time.

Regardless of whether  or , for any 
fixed  and δopt , the detection performances of the 

VSS  charts with various values of m significantly differ 
from that those with the scenarios of known ( ) 
process parameters (Tables 2 & 3). For  , all 
the VSS  charts, whether based on known or estimated 
process parameters exhibit similar ( , MRL1, ) 
performances. As an example, when  = 5,  = 1.5, 
and , the ( , MRL1, ) values for the VSS 

 charts are {(1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 
1)} for  {10, 20, 40, 80, }, respectively (Table 
3). Remarkably, when m becomes larger, particularly at  
m = 80, the run-length performance of the VSS  chart 
using estimated process parameters closely approaches 
that of the scenario with known ( ) process 
parameters. Therefore, to obtain comparable MRL1 
performance with that of the scenario with known process 
parameters, practitioners are recommended to choose 

. Nonetheless, it is noteworthy that selecting 
a large sample size m in the Phase-I process increases 
sampling costs, which may be economically unfavourable.

EMRL-BASED OPTIMISATION OF THE VSS  CHART 
USING ESTIMATED PROCESS PARAMETERS

In real-world scenarios, having complete knowledge of the 
exact and actual shift size beforehand is rarely feasible. In 
cases where the actual shift size of a process is uncertain 
and deviates from , it can result in unsatisfactory 
performance for the control charts designed using the MRL 
optimisation model (15) - (18) for a specific shift size. 
In such instances, the control chart may fail to promptly 
detect smaller or larger process shifts than anticipated, 
leading to increased false alarms or delayed detection. 
Therefore, to enhance effective signalling performance 
over a process shift-size domain, the EMRL optimisation is 
implemented for the proposed VSS  chart using estimated 
process parameters. The mathematical formulation for the 
EMRL optimisation model under the cases with unknown 
shift sizes is detailed below:

              ,              (19)

subject to the same constraints (16) - (18) in the MRL 
optimisation model discussed in the previous section. The 
computation of EMRL is

                EMRL = ,                 (20)

where  represents the pdf of δ. Here, the process mean 
shift size is modelled as a uniform distribution (δmin, 
δmax ), where δmin and δmax represent the minimum 
and maximum shift values, respectively. Throughout this 
paper, we use the shift-size domain (δmin, δmax ] = (0, 2].

The process of identifying the optimal  
( , , W, K) parameters for the VSS  chart, by using 
the developed EMRL optimisation model is performed 
through the following steps: 
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TABLE 2. The optimal charting parameters ( , , W, K) (first row of each cell) and the ( , MRL1, ) values 
(second row of each cell) of the VSS  chart when {10, 20, 40, 80, }, MRL0 = 250, ASS0 =   {3, 5, 7, 9}, 

 and δ opt  {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}

( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K)

( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, )

0.2 (1, 15, 1.5690, 
3.2098)

(5, 153, 7429)

(1, 15, 1.5130, 
3.1100)

(7, 145, 2473)

(1, 15, 1.4835, 
3.0547)

(9, 141, 1312)

(1, 15, 1.4686, 
3.0246)

(10, 139, 915)

(1, 15, 1.4537, 
2.9922)

(11, 139, 597)
0.4 (1, 15, 1.5690, 

3.2098)
(3, 42, 2610)

(1, 15, 1.5130, 
3.1100)

(3, 36, 730)

(1, 15, 1.4835, 
3.0547)

(3, 34, 345)

(1, 15, 1.4686, 
3.0246)

(4, 33, 222)

(1, 15, 1.4537, 
2.9922)

(4, 32, 133)
0.6 (1, 15, 1.5690, 

3.2098)
(2, 11, 442)

(1, 15, 1.5130, 
3.1100)

(2, 10, 120)

(1, 15, 1.4835, 
3.0547)

(2, 9, 60)

(1, 15, 1.4686, 
3.0246)

(2, 9, 43)

(1, 15, 1.4537, 
2.9922)

(2, 9, 31)
0.8 (1, 15, 1.5690, 

3.2098)
(2, 6, 60)

(1, 15, 1.5130, 
3.1100)

(2, 5, 25)

(1, 15, 1.4835, 
3.0547)

(2, 5, 18)

(1, 15, 1.4686, 
3.0246)

(2, 5, 15)

(1, 15, 1.4537, 
2.9922)

(2, 5, 13)
1.0 (1, 14, 1.5252, 

3.2082)
(2, 4, 17)

(2, 12, 1.7018, 
3.1044)

(1, 3, 12)

(2, 10, 1.5535, 
3.0524)

(1, 3, 10)

(1, 12, 1.3381, 
3.0243)
(2, 3, 9)

(2, 10, 1.5216, 
2.9922)
(1, 3, 8)

1.5 (2, 7, 1.3652, 
3.1905)
(1, 2, 5)

(2, 7, 1.3197, 
3.1024)
(1, 2, 4)

(2, 6, 1.1623, 
3.0518)
(1, 2, 4)

(1, 7, 0.9680, 
3.0239)
(1, 2, 4)

(1, 6, 0.8347, 
2.9922)
(1, 2, 4)

2.0 (1, 6, 0.8833, 
3.1933)
(1, 2, 3)

(1, 5, 0.6866, 
3.1023)
(1, 2, 3)

(2, 7, 1.2961, 
3.0520)
(1, 2, 2)

(2, 6, 1.1522, 
3.0237)
(1, 2, 2)

(2, 6, 1.1420, 
2.9922)
(1, 2, 2)

0.2 (1, 15, 1.1204, 
3.1678)

(6, 123, 2522)

(1, 15, 1.0910, 
3.0877)

(7, 113, 1212)

(1, 15, 1.0755, 
3.0424)

(8, 108, 782)

(1, 15, 1.0676, 
3.0179)

(8, 106, 605)

(1, 15, 1.0597, 
2.9922)

(9, 104, 447)
0.4 (1, 15, 1.1204, 

3.1678)
(3, 25, 598)

(1, 15, 1.0910, 
3.0877)

(3, 22, 242)

(1, 15, 1.0755, 
3.0424)

(3, 21, 143)

(1, 15, 1.0676, 
3.0179)

(3, 20, 107)

(1, 15, 1.0597, 
2.9922)

(3, 19, 78)
0.6 (1, 15, 1.1204, 

3.1678)
(2, 7, 81)

(2, 15, 1.2262, 
3.0864)

(2, 6, 40)

(1, 15, 1.0755, 
3.0424)

(2, 6, 26)

(1, 15, 1.0676, 
3.0179)

(2, 6, 22)

(1, 15, 1.0597, 
2.9922)

(2, 6, 18)
0.8 (1, 15, 1.1204, 

3.1678)
(2, 4, 17)

(3, 15, 1.4169, 
3.0849)

(1, 3, 11)

(2, 15, 1.2080, 
3.0419)
(2, 3, 9)

(2, 14, 1.1507, 
3.0177)
(2, 3, 9)

(2, 14, 1.1420, 
2.9922)
(2, 3, 8)

1.0 (3, 14, 1.4090, 
3.1599)
(1, 2, 7)

(3, 12, 1.2492, 
3.0839)
(1, 2, 6)

(3, 13, 1.2922, 
3.0411)
(1, 2, 5)

(2, 15, 1.1989, 
3.0177)
(1, 2, 5)

(2, 14, 1.1420, 
2.9922)
(1, 2, 5)

1.5 (2, 9, 0.8268, 
3.1572)
(1, 2, 3)

(2, 8, 0.6857, 
3.0828)
(1, 2, 3)

(4, 12, 1.5462, 
3.0407)
(1, 2, 2)

(4, 10, 1.3836, 
3.0173)
(1, 2, 2)

(4, 10, 1.3725, 
2.9922)
(1, 1, 2)

2.0 (3, 6, 0.4439, 
3.1521)
(1, 1, 2)

(3, 6, 0.4346, 
3.0814)
(1, 1, 2)

(3, 6, 0.4296, 
3.0402)
(1, 1, 2)

(3, 6, 0.4271, 
3.0172)
(1, 1, 2)

(3, 6, 0.4244, 
2.9922)
(1, 1, 2)

continue to next page
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0.2 (1, 15, 0.8251, 
3.1491)

(6, 104, 1555)

(1, 15, 0.8056, 
3.0780)

(6, 94, 847)

(1, 15, 0.7954, 
3.0374)

(7, 89, 581)

(1, 15, 0.7902, 
3.0154)

(7, 87, 466)

(1, 15, 0.7849, 
2.9922)

(7, 85, 361)
0.4 (1, 15, 0.8251, 

3.1491)
(3, 19, 284)

(1, 15, 0.8056, 
3.0780)

(3, 17, 137)

(1, 15, 0.7954, 
3.0374)

(3, 16, 91)

(1, 15, 0.7902, 
3.0154)

(3, 15, 74)

(1, 15, 0.7849, 
2.9922)

(3, 15, 59)
0.6 (1, 15, 0.8251, 

3.1491)
(2, 6, 40)

(1, 15, 0.8056, 
3.0780)

(2, 5, 24)

(1, 15, 0.7954, 
3.0374)

(2, 5, 19)

(1, 15, 0.7902, 
3.0154)

(2, 5, 17)

(1, 15, 0.7849, 
2.9922)

(2, 5, 15)
0.8 (1, 15, 0.8251, 

3.1491)
(2, 3, 11)

(2, 15, 0.8857, 
3.0775)
(2, 3, 8)

(2, 15, 0.8742, 
3.0372)
(2, 3, 7)

(1, 15, 0.7902, 
3.0154)
(2, 3, 7)

(3, 15, 0.9601, 
2.9922)
(1, 3, 6)

1.0 (2, 15, 0.9078, 
3.1478)
(1, 2, 5)

(3, 15, 0.9865, 
3.0769)
(1, 2, 4)

(3, 14, 0.9137, 
3.0369)
(1, 2, 4)

(2, 15, 0.8683, 
3.0153)
(1, 2, 4)

(2, 13, 0.7412, 
2.9922)
(1, 2, 4)

1.5 (5, 10, 0.8786, 
3.1403)
(1, 1, 2)

(5, 9, 0.6853, 
3.0742)
(1, 1, 2)

(5, 8, 0.4296, 
3.0359)
(1, 1, 2)

(5, 8, 0.4270, 
3.0149)
(1, 1, 2)

(4, 9, 0.5180, 
2.9922)
(1, 1, 2)

2.0 (3, 8, 0.2570, 
3.1393)
(1, 1, 2)

(6, 8, 0.6854, 
3.0738)
(1, 1, 1)

(6, 8, 0.6769, 
3.0359)
(1, 1, 1)

(6, 8, 0.6724, 
3.0149)
(1, 1, 1)

(6, 8, 0.6679, 
2.9922)
(1, 1, 1)

0.2 (1, 15, 0.5866, 
3.1382)

(5, 90, 1143)

(1, 15, 0.5736, 
3.0725)

(6, 81, 659)

(1, 15, 0.5667, 
3.0346)

(6, 77, 467)

(1, 15, 0.5631, 
3.0140)

(6, 74, 383)

(1, 15, 0.5596, 
2.9922)

(6, 72, 307)
0.4 (1, 15, 0.5866, 

3.1382)
(2, 16, 177)

(1, 15, 0.5736, 
3.0725)

(2, 14, 97)

(1, 15, 0.5667, 
3.0346)

(2, 14, 70)

(1, 15, 0.5631, 
3.0140)

(2, 13, 59)

(1, 15, 0.5596, 
2.9922)

(2, 13, 50)
0.6 (1, 15, 0.5866, 

3.1382)
(2, 5, 29)

(7, 15, 1.1734, 
3.0708)

(1, 4, 21)

(4, 15, 0.7509, 
3.0344)

(2, 4, 16)

(3, 15, 0.6723, 
3.0140)

(2, 4, 14)

(2, 15, 0.6087, 
2.9922)

(2, 4, 13)
0.8 (7, 15, 1.2041, 

3.1339)
(1, 2, 9)

(6, 15, 0.9858, 
3.0712)
(1, 2, 7)

(5, 15, 0.8485, 
3.0343)
(1, 2, 6)

(5, 15, 0.8403, 
3.0319)
(1, 2, 6)

(7, 15, 1.1420, 
2.9922)
(1, 2, 5)

1.0 (3, 15, 0.7013, 
3.1369)
(1, 2, 4)

(2, 14, 0.5557, 
3.0718)
(1, 2, 4)

(6, 15, 0.9730, 
3.0342)
(1, 2, 3)

(5, 15, 0.8403, 
3.0139)
(1, 2, 3)

(4, 15, 0.7412, 
2.9922)
(1, 2, 3)

1.5 (5, 10, 0.2574, 
3.1320)
(1, 1, 2)

(5, 10, 0.2524, 
3.0700)
(1, 1, 2)

(5, 10, 0.2498, 
3.0338)
(1, 1, 2)

(5, 10, 0.2484, 
3.0138)
(1, 1, 2)

(4, 10, 0.2039, 
2.9922)
(1, 1, 2)

2.0 (6, 10, 0.3262, 
3,1319)
(1, 1, 1)

(6, 10, 0.3195, 
3.0699)
(1, 1, 1)

(6, 10, 0.3160, 
3.0338)
(1, 1, 1)

(6, 10, 0.3141, 
3.0138)
(1, 1, 1)

(6, 10, 0.3123, 
2.9922)
(1, 1, 1)
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TABLE 3. The optimal charting parameters ( , , W, K) (first row of each cell) and the ( , MRL1, ) values 
(second row of each cell) of the VSS  chart when {10, 20, 40, 80, }, MRL0 = 250, ASS0 =  {3, 5, 7, 9}, 

 and δ opt  {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}

 

( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K)
( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, )

0.2 (1, 15, 1.6357, 3.2029)
(2, 155,7466)

(1, 15, 1.5490, 3.1084)
(4, 146, 2499)

(1, 15, 1.5099, 
3.0542)

(6, 141, 1325)

(1, 15, 1.4916, 3.0244)
(7, 139, 924)

(1, 15, 1.4740, 
2.9922)

(9, 138, 603)
0.4 (1, 15, 1.6357, 3.2029)

(1, 40, 2733)
(1, 15, 1.5490, 3.1084)

(1, 33, 755)
(1, 15, 1.5099, 

3.0542)
(1, 30, 352)

(1, 15, 1.4916, 3.0244)
(1, 29, 225)

(1, 15, 1.4740, 
2.9922)

(1, 28, 132)
0.6 (1, 15, 1.6357, 3.2029)

(1, 6, 484)
(1, 15, 1.5490, 3.1084)

(1, 5, 121)
(1, 15, 1.5099, 

3.0542)
(1, 4, 57)

(1, 15, 1.4916, 3.0244)
(1, 4, 38)

(1, 15, 1.4740, 
2.9922)

(1, 4, 26)
0.8 (1, 15, 1.6357, 3.2029)

(1, 2, 60)
(1, 15, 1.5490, 3.1084)

(1, 1, 19)
(1, 15, 1.5099, 

3.0542)
(1, 1, 11)

(1, 15, 1.4916, 3.0244)
(1, 1, 8)

(1, 15, 1.4740, 
2.9922)
(1, 1, 6)

1.0 (1, 15, 1.6357, 3.2029)
(1, 1, 8)

(1, 14, 1.5055, 3.1079)
(1, 1, 4)

(1, 14, 1.4685, 
3.0540)
(1, 1, 3)

(1, 13, 1.4065, 3.0243)
(1, 1, 3)

(2, 15, 1.7844, 
2.9922)
(1, 1, 2)

1.5 (2, 13, 1.9137, 3.1909)
(1, 1, 1)

(2, 11, 1.6901, 3.1030)
(1, 1, 1)

(2, 11, 1.6457, 
3.0522)
(1, 1, 1)

(2, 10, 1.5630, 3.0238)
(1, 1, 1)

(2, 10, 1.5440, 
2.9922)
(1, 1, 1)

2.0 (2, 7, 1.4088, 3.1887)
(1, 1, 1) 

(2, 7, 1.3460, 3.1019)
(1, 1, 1)

(2, 6, 1.1796, 3.0517)
(1, 1, 1)

(2, 6, 1.1674, 3.0236)
(1, 1, 1)

(2, 6, 1.1554, 
2.9922)
(1, 1, 1)

0.2 (1, 15, 1.1450, 3.1660)

(3, 123, 2537)

(1, 15, 1.1076, 3.0871)

(5, 113,1220)

(1, 15, 1.0895, 
3.0422)

(6, 107, 787) 

(1, 15, 1.0807, 3.0178)

(6, 105, 609)

(1, 15, 1.0720, 
2.9922)

(7, 104, 450)
0.4 (1, 15, 1.1450, 3.1660)

(1, 22, 608)
(1, 15, 1.1076, 3.0871)

(1, 19, 244)
(1, 15, 1.0895, 

3.0422)
(1, 18, 142)

(1, 15, 1.0807, 3.0178)
(1, 17, 105)

(1, 15, 1.0720, 
2.9922)

(1, 17, 76)
0.6 (1, 15, 1.1450, 3.1660)

(1, 4, 80)
(1, 15, 1.1076, 3.0871)

(1, 4, 35)
(1, 15, 1.0895, 

3.0422)
(1, 3, 23)

(1, 15, 1.0807, 3.0178)
(1, 3, 19)

(1, 15, 1.0720, 
2.9922)

(1, 3, 15)
0.8 (1, 15, 1.1450, 3.1660)

(1, 2, 13)
(2, 15, 1.2455, 3.0858)

(1, 1, 8)
(2, 15, 1.2243, 

3.0417)
(1, 1, 6)

(1, 15, 1.0807, 3.0178)
(1, 1, 5)

(2, 14, 1.1554, 
2.9922)
(1, 1, 5)

1.0 (2, 14, 1.2363, 3.1618)
(1, 1, 4)

(3, 14, 1.3904, 3.0841)
(1, 1, 3)

(4, 13, 1.6349, 
3.0405)
(1, 1, 3)

(3, 15, 1.4029, 3.0175)
(1, 1, 2)

(4, 15, 1.7039, 
2.9922)
(1, 1, 2)

1.5 (4, 12, 1.6653, 3.1539)
(1, 1,1)

(4, 11, 1.5286, 3.0821)
(1, 1, 1)

(4, 11, 1.5009, 
3.0404)
(1, 1, 1)

(4, 10, 1.4028, 3.0173)
(1, 1, 1)

(4, 10, 1.3906, 
2.9922)
(1, 1, 1)
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2.0 (4, 7, 1.0339, 3.1521)
(1, 1, 1)

(4, 6, 0.6971, 3.0812)
(1, 1, 1)

(4, 6, 0.6869, 3.0401)
(1, 1, 1)

(4, 6, 0.6818, 3.0172)
(1, 1, 1)

(4, 6, 0.6766, 
2.9922)
(1, 1, 1)

0.2 (1, 15, 0.8407, 3.1483)
(4, 103,1561)

(1, 15, 0.8174, 3.0777)
(5, 93, 850)

(1, 15, 0.8058, 
3.0373)

(5, 88, 583)

(1, 15, 0.8001, 3.0153)
(6, 86, 468)

(1, 15, 0.7944, 
2.9922)

(6, 84, 363) 
0.4 (1, 15, 0.8407, 3.1483)

(1, 17, 285)
(1, 15, 0.8174, 3.0777)

(1, 15, 136)
(1, 15, 0.8058, 

3.0373)
(1, 14, 90)

(1, 15, 0.8001, 3.0153)
(1, 14, 72)

(1, 15, 0.7944, 
2.9922)

(1, 13,57) 
0.6 (2, 15, 0.9244, 3.1470)

(1, 4, 39)
(2, 15, 0.8982, 3.0772)

(1, 3, 22)
(3, 15, 0.9855, 

3.0369)
(1, 3, 17)

(3, 15, 0.9783, 3.0152)
(1, 3, 15)

(4, 15, 1.1014, 
2.9922)

(1, 3, 13)
0.8 (5, 15, 1.3715, 3.1424)

(1, 2, 9)
(4, 15, 1.1352, 3.0761)

(1, 1, 6)
(4, 15, 1.1181, 

3.0367)
(1, 1, 5)

(5, 15, 1.2979, 3.0151)
(1, 1, 5)

(5, 14, 1.2263, 
2.9922)
(1, 1, 5)

1.0 (5, 15, 1.3715, 3.1424) (5, 13, 1.1911, 3.0750) (4, 12, 0.9034,
3.0364)

(6, 15, 1.6177, 3.0150) (6, 15, 1.6043, 
2.9922) 

(1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 2) (1,1, 2)
1.5 (6, 11, 1.3700, 3.1395)

(1, 1, 1)
(6, 11, 1.3285, 3.0742)

(1, 1, 1)
(6, 10, 1.1730, 

3.0360)
(1, 1, 1)

(6, 10, 1.1642, 3.0149)
(1, 1, 1)

(6, 10, 1.1554, 
2.9922)
(1, 1, 1)

2.0 (6, 8, 0.7150, 3.1385)
(1, 1, 1)

(6, 8, 0.6959, 3.0738)
(1, 1, 1)

(6, 8, 0.6863, 3.0359)
(1, 1, 1)

(6, 8, 0.6815, 3.0149)
(1, 1, 1)

(6, 8, 0.6766, 
2.9922)
(1, 1, 1)

0.2 (2, 15, 0.6510, 3.1371)
(4, 90,1149)

(1, 15, 0.5832, 3.0723)
(5, 81,661)

(1, 15, 0.5754, 
3.0345)

(5, 76, 469)

(1, 15, 0.5716, 3.0140)
(5, 73, 384)

(1, 15, 0.5677, 
2.9922)

(5, 71, 308)
0.4 (1, 15, 0.5987, 3.1377)

(1, 14, 177)
(1, 15, 0.5832, 3.0723)

(1, 13, 96)
(1, 15, 0.5754, 

3.0345)
(1, 12, 69)

(1, 15, 0.5716, 3.0140)
(1, 12,58)

(1, 15, 0.5677, 
2.9922)

(1, 11, 49)
0.6 (3, 15, 0.7142, 3.1365)

(1, 4, 27)
(5, 15, 0.8684, 3.0713)

(1, 3, 18)
(1, 15, 0.5754, 

3.0345)
(1, 3, 14)

(5, 15, 0.8505, 3.0139)
(1, 3,13)

(6, 15, 0.9711, 
2.9922)

(1, 3, 12)
0.8 (6, 15, 1.0272, 3.1345)

(1, 2, 7)
(8, 15, 1.5196, 3.0703)

(1, 1,6)
(8, 15, 1.4966, 

3.0339)
(1, 1, 5)

(8, 15, 1.4852, 3.0138)
(1, 1, 5)

(6, 15, 0.9711, 
2.9922)
(1, 1, 4)

1.0 (8, 14, 1.4759, 3.1324)
(1, 1, 3)

(8, 13, 1.3263, 3.0701)
(1, 1, 3)

(7, 15, 1.1723, 
3.0340)
(1,1,2)

(8, 15, 1.4852, 3.0138)
(1, 1, 2)

(8, 15, 1.4740, 
2.9922)
(1, 1, 2)

1.5 (8, 11, 1.0263, 3.1318)
(1, 1, 1)

(8, 11, 0.9987, 3.0699)
(1, 1, 1)

(8, 10, 0.6860, 
3.0337)
(1, 1, 1)

(8, 10, 0.6814, 3.0138)
(1, 1, 1)

(8, 10, 0.6766, 
2.9922)
(1, 1, 1)

2.0 (8, 10, 0.7137, 3.1315)
(1, 1, 1)

(8, 10, 0.6953, 3.0698)
(1, 1, 1)

(8, 10, 0.6860, 
3.0337)
(1, 1, 1)

(8, 10, 0.6814, 3.0138)
(1, 1, 1)

(8, 10, 0.6766, 
2.9922)
(1, 1, 1)
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TABLE 4. The optimal charting parameters ( , , W, K) and the EMRL values of the VSS  chart, together with (
, MRL1, ) values corresponding to specific shift sizes δ {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, when {10, 

20, 40, 80, }, MRL0 = 250, ASS0 =  {3, 5, 7, 9} and 

δ

( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K)
EMRL EMRL EMRL EMRL EMRL

( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, )

(1, 15, 1.5690, 
3.2098)
24.46

(1, 15, 1.5130, 
3.1100)
22.73

(1, 15, 1.4835, 
3.0547)
22.12

(1, 15, 1.4686, 
3.0246)
21.76

(1, 15, 1.4537, 
2.9922)
21.43

0.2 (5, 153, 7429) (7, 145, 2473) (9, 141, 1312) (10, 139, 915) (11, 139, 597)
0.4 (3, 42, 2610) (3, 36, 730) (3, 34, 345) (4, 33, 222) (4, 32, 133)
0.6 (2, 11, 442) (2, 10, 120) (2, 9, 60) (2, 9, 43) (2, 9, 31)
0.8 (2, 6, 60) (2, 5, 25) (2, 5, 18) (2, 5, 15) (2, 5, 13)
1.0 (2, 4, 17) (2, 4, 12) (2, 4, 10) (2, 4, 10) (2, 3, 9)
1.5 (1, 2, 7) (1, 2, 6) (1, 2, 6) (1, 2, 6) (1, 2, 5)
2.0 (1, 2, 4) (1, 2, 4) (1, 2, 4) (1, 2, 4) (1, 2, 4)

(2, 15, 1.2616, 
3.1644)
18.89

(1, 15, 1.0910, 
3.0877)
17.39

(1, 15, 1.0755, 
3.0424)
16.87

(1, 15, 1.0676, 
3.0179)
16.48

(1, 15, 1.0597, 
2.9922)
16.31

0.2 (6, 126, 2522) (7, 113, 1212) (8, 108, 782) (8, 106, 605) (9, 104, 447)
0.4 (3, 26, 623) (3, 22, 242) (3, 21, 143) (3, 20, 107) (3, 19, 78)
0.6 (2, 7, 86) (2, 7, 38) (2, 6, 26) (2, 6, 22) (2, 6, 18)
0.8 (2, 4, 17) (2, 4, 11) (2, 4, 10) (2, 4, 9) (2, 4, 9)
1.0 (1, 3, 7) (2, 3, 7) (2, 3, 7) (2, 3, 6) (2, 3, 6)
1.5 (1, 2, 3) (1, 2, 4) (1, 2, 4) (1, 2, 4) (1, 2, 4)
2.0 (1, 2, 2) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3)

(3, 15, 1.0120, 
3.1464)
16.07

(2, 15, 0.8857, 
3.0775)
14.90

(2, 15, 0.8742, 
3.0372)
14.20

(2, 15, 0.8683, 
3.0153)
13.99

(2, 15, 0.8624, 
2.9922)
13.69

0.2 (6, 106, 1562) (6, 95, 852) (7, 90, 586) (7, 88, 470) (7, 85, 366) 
0.4 (2, 19, 298) (3, 17, 140) (3, 16, 93) (3, 16, 75) (3, 15, 60)
0.6 (2, 6, 42) (2, 5, 24) (2, 5, 19) (2, 5, 17) (2, 5, 15)
0.8 (2, 3, 11) (2, 3, 8) (2, 3, 7) (2, 3, 7) (2, 3, 7)
1.0 (1, 2, 5) (1, 2, 5) (1, 2, 5) (1, 2, 4) (1, 2, 4)
1.5 (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3)
2.0 (1, 1, 2) (1, 2, 2) (1, 2, 2) (1, 2, 2) (1, 2, 2)

(4, 15, 0.7789, 
3.1363)
14.15

(6, 15, 0.9858, 
3.0712)
13.05

(5, 15, 0.8458, 
3.0343)
12.49

(5, 15, 0.8403, 
3.0139)
12.15

(5, 15, 0.8347, 
2.9922)
11.81

0.2 (5, 92, 1151) (6, 85, 673) (6, 79, 478) (6, 76, 393) (6, 74, 317)
continue to next page
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TABLE 5. The optimal charting parameters ( , , W, K) and the EMRL values of the VSS  chart, together with  
( , MRL1, ) values corresponding to specific shift sizes {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, when {10, 

20, 40, 80, }, MRL0 = 250, ASS0 =   {3, 5, 7, 9} and 

δ

( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K) ( , , W, K)
EMRL EMRL EMRL EMRL EMRL

( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, ) ( , MRL1, )

(1, 15, 1.6357, 
3.2029)
22.44

(1, 15, 1.5490, 
3.1084)
20.72

(1, 15, 1.5099, 
3.0542)
19.89

(1, 15, 1.4916, 
3.0244)
19.44

(1, 15, 1.4740, 
2.9922)
19.44

0.2 (2, 155, 7466) (4, 146, 2499) (6, 141, 1325) (7, 139, 924) (9, 138, 603)
0.4 (1, 40, 2733) (1, 33, 755) (1, 30, 352) (1, 29, 225) (1, 28, 132)
0.6 (1, 6, 484) (1, 5, 121) (1, 4, 57) (1, 4, 38) (1, 4, 26)
0.8 (1, 2, 60) (1, 1, 19) (1, 1, 11) (1, 1, 8) (1, 1,6)
1.0 (1, 1, 8) (1, 1, 4) (1, 1, 3) (1, 1, 3) (1, 1, 2)
1.5 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2.0 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 15, 1.1450, 
3.1660)
17.25

(1, 15, 1.1076, 
3.0871)
15.98

(1, 15, 1.0895, 
3.0422)
15.33

(1, 15, 1.0807, 
3.0178)
14.90

(1, 15, 1.0720, 
2.9922)
14.77

0.2 (3, 123, 2537) (5, 113, 1220) (6, 107, 787) (6, 105, 609) (7, 104, 450)
0.4 (1, 22, 608) (1, 19, 244) (1, 18, 142) (1, 17, 105) (1, 17, 76)
0.6 (1, 4, 80) (1, 4, 35) (1, 3, 23) (1, 3, 19) (1, 3, 15)
0.8 (1, 2, 13) (1, 1, 8) (1, 1, 6) (1, 1, 5) (1, 1, 5)
1.0 (1, 1, 4) (1, 1, 3) (1, 1, 3) (1, 1, 2) (1, 1, 2)
1.5 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2.0 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 15, 0.8407, 
3.1483)
14.72

(1, 15, 0.8174, 
3.0777)
13.55

(1, 15, 0.8058, 
3.0373)
12.98

(1, 15, 0.8001, 
3.0153)
12.68

(1, 15, 0.7944, 
2.9922)
12.38

0.2 (4, 103, 1561) (5, 93, 850) (5, 88, 583) (6, 86, 468) (6, 84, 363)
0.4 (1, 17, 285) (1, 15, 136) (1, 14, 90) (1, 14, 72) (1, 13, 57)

0.4 (2, 16, 184) (2, 15, 106) (2, 14, 74) (2, 14, 63) (2, 13, 52)
0.6 (2, 5, 29) (1, 5, 20) (2, 4, 16) (2, 4, 15) (2, 4, 13)
0.8 (1, 3, 8) (1, 2, 7) (1, 2, 6) (1, 2, 6) (1, 2, 6)
1.0 (1, 2, 4) (1, 2, 4) (1, 2, 4) (1, 2, 3) (1, 2, 3)
1.5 (1, 2, 2) (1, 1, 2) (1, 1, 2) (1, 1, 2) (1, 1, 2)
2.0 (1, 1, 2) (1, 1, 1) (1, 1, 2) (1, 1, 2) (1, 1, 2)

continue from previous page

continue to next page
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TABLE 6. Summary statistics of the Phase-I and Phase-II data obtained from the resistivity measurements (in Ω-cm) of 
silicon epitaxial wafers

Phase-I Phase-II
Subgroup 
number, 

Subgroup 
number, 

1 4.4214 0.1106 21 6 4.4239 1.0087 15 4.3893 0.2575
2 4.3376 0.1214 22 15 4.4042 0.8343 8 4.4131 0.8595
3 4.4549 0.1236 23 6 4.3720 –0.2579 8 4.3660 –0.4682
4 4.3876 0.1425 24 6 4.3718 –0.2635 8 4.3839 0.0354
5 4.3753 0.1121 25 6 4.4196 0.9043 8 4.4189 1.0229
6 4.4164 0.0975 26 6 4.3291 –1.3069 8 4.3332 –1.3940
7 4.3550 0.1091 27 15 4.4163 1.3023 8 4.4041 0.6072
8 4.3302 0.0954 28 15 4.3844 0.0689 8 4.4128 0.8512
9 4.3202 0.0916 29 6 4.4037 0.5159 8 4.4433 1.7125
10 4.3167 0.0805 30 6 4.4796 2.3681 15 4.4916 4.2098
11 4.3890 0.0822 31 15 4.4983 4.4659 15 4.4983 4.4659
12 4.3467 0.0862 32 6 4.5180 3.3057 15 4.4795 3.7426
13 4.3501 0.1073 33 6 4.4832 2.4578 15 4.4845 3.9346
14 4.4626 0.0924 34 15 4.4516 2.6633 15 4.4516 2.6633
15 4.3039 0.1013 35 15 4.4663 3.2323 15 4.4663 3.2323
16 4.4505 0.1008
17 4.4108 0.0876
18 4.3701 0.0923
19 4.4537 0.0821
20 4.3992 0.0896

 The boldfaced values denote the out-of-control cases

0.6 (1, 4, 39) (1, 3, 22) (1, 3, 17) (1, 3, 15) (1, 3,13)
0.8 (1, 2, 9) (1, 1, 6) (1, 1, 5) (1, 1, 5) (1, 1, 5)
1.0 (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 2) (1, 1, 2)
1.5 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2.0 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 15, 0.5987, 
3.1377)
13.19

(1, 15, 0.5832, 
3.0723)
12.21

(1, 15, 0.5754, 
3.0345)
11.56

(1, 15, 0.5716, 
3.0140)
11.26

(1, 15, 0.5677, 
2.9922)
11.01

0.2 (4, 90, 1147) (5, 81, 661) (5, 76, 469) (5, 73, 384) (5, 71, 308)
0.4 (1, 14, 177) (1, 13, 96) (1, 12, 69) (1, 12, 58) (1, 11, 49)
0.6 (1, 4, 27) (1, 3, 18) (1, 3, 14) (1, 3, 13) (1, 3, 12)
0.8 (1, 2, 7) (1, 1, 6) (1, 1, 5) (1, 1, 5) (1, 1, 4)
1.0 (1, 1, 3) (1, 1, 3) (1, 1, 2) (1, 1, 2) (1, 1, 2)
1.5 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2.0 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

continue from previous page
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Step 1 Specify the targeted values of , , m, , δmin, 
and δmax.

Steps 2 and 3 Same as Steps 2 and 3 in the MRL optimisation 
model discussed in the previous section.

Step 4 Using the predetermined charting parameters  
( , , W, K) from Steps (2) and (3), evaluate the 
objective function EMRL using Equation (20). For 
solving the integral in Equation (20), the Gauss-Legendre 
Quadrature technique is adopted.

Step 5 Perform Steps 2 to 4 repeatedly to identify all the 
possible combinations of ( , , W, K) for the VSS  
chart using estimated process parameters when δ = 0, 
which satisfy constraints (16) - (18).

Step 6 Determine the optimal ( , , W , K ) combination 
for the VSS  chart using estimated process parameters 
that yields the most minimum EMRL value over a domain 
of mean shifts.

Through the aforementioned EMRL optimisation 
model, we can easily determine the optimal  
( , , W,  K) parameters for the VSS  chart using 
estimated process parameters. In Tables 4 and 5, the 
optimal ( , , W , K ) parameters for the VSS  chart 
are shown for m  {10, 20, 40, 80, }, as well as the 
corresponding EMRL and ( , MRL1, ) values, 
when δ  {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, MRL0 = 
= 250, and ASS0 =   {3, 5, 7, 9}, for  and 

, respectively. For instance, under the condition 
of  = 3, m = 40, and , the VSS  chart is 
optimised with charting parameters ( , , W , K ) = 
(1, 15, 1.5099, 3.0542). These optimal parameters yield 
EMRL = 19.89 and ( , MRL1, ) = (1, 4, 57) for  
δ = 0.6 (Table 5).

According to Tables 4 and 5, it is evident that, for any 
fixed , an increase in the value of m leads to a reduction 
in the EMRL value, which tends to converge to the EMRL 
value when the process parameters are known ( ). 
For example, considering  = 5, and , the EMRL 

 {18.89, 17.39, 16.87, 16.48, 16.31} are obtained for the 
VSS  charts with  {10, 20, 40, 80, }, respectively 
(Table 4). It is also apparent that as  increases, the EMRL 
value of the VSS  charts for both scenarios of estimated 
and known process parameters decreases. This suggests 
that increasing the value of  enhances the effectiveness 
and efficiency of the chart across a domain of shift sizes. 
Additionally, referring to Tables 4 and 5, we can recognise 
that the performance in detecting out-of-control conditions 
under the EMRL optimisation model is nearly identical 
to that under the MRL optimisation model, as shown in  
Tables 2 and 3. For illustration, when  = 9, m = 10, and 
δopt  = 0.2, we obtain ( , MRL1, ) = (4, 90, 1149) 
for the optimal MRL-based VSS  chart (Table 3), while 

the optimal EMRL-based VSS  chart has ( , MRL1, 
) = (4, 90, 1147) (Table 5). Thus, it is suggested to 

employ the optimal EMRL-based VSS  chart using 
estimated process parameters, as it exhibits equal or 
superior performance compared to the optimal MRL-based 
VSS  chart, especially in practical scenarios where shift 
sizes are typically unknown and difficult to predict.

A REAL-LIFE DATA APPLICATION

Within this section, real-life data provided by a wafer 
substrate manufacturing firm is adopted to showcase the 
operation of the proposed optimal VSS  charts. The VSS 

 charts demonstrated in this section employ the MRL 
metric and estimated process parameters. The dataset 
includes information on the epitaxial processing of silicon 
wafers used in the semiconductor sector. Serving as the 
fundamental material for creating integrated circuits 
and semiconductor devices, silicon epitaxial wafers 
are essential for the functionality of today’s electronic 
technology. These wafers consist of monocrystalline layers 
deposited onto substrates and are commonly manufactured 
with varying resistivities (measured in ohm-centimetre, 
Ω-cm). Monitoring the resistivity of the silicon epitaxial 
wafer is vital for maintaining the high-quality production 
of electronic devices, ultimately enhancing their longevity 
and efficiency. Therefore, the individual resistivity 
measurement of silicon epitaxial wafers is identified as 
the key quality characteristic of interest for this application 
example.

The raw data for the resistivity measurements of 
silicon epitaxial wafers are collected from 35 samples. 
The first 20 samples (Phase-I) are used to configure the 
proposed optimal VSS  chart, with the subsequent 15 
samples (Phase-II) applied to analyse the effectiveness 
and efficiency of the proposed optimal control chart. The 
detailed summary statistics for the resistivity measurements 
of silicon epitaxial wafers in both Phase-I and Phase-
II are given in Table 6. Assuming an MRL0 of 250, the 
monitoring schemes in this analysis is optimised to detect 
a shift of δopt  = 0.8. 

During the Phase-I calibration stage, a dataset 
consisting of m = 20 individual resistivity measurements 
is collected, each with a sample size  = 9. First, Ryan’s 
(2000) Bonferroni-type adjustment is employed to analyse 
the stability of the data gathered in Phase-I. The calculation 
of control limits for the Bonferroni-adjusted  and S charts 
is determined through  
and , respectively. 
Here,  = 4.3826 refers to the grand average of 
samples,  = 0.1003 denotes the average standard 
deviation across m samples,  represents the  
(1 – )×100th percentile of the standard normal distribution,  

 =  = 0.9693 (Ryan 
2000) indicates a fixed constant that remains unbiased, and  
FAP = 0.0834 signifies the probability of encountering a 
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In Phase-II process monitoring, the optimal charting 
parameters for the VSS  charts based on estimated 
process parameters are found to be ( , , W, K) =  
(6, 15, 0.9858, 3.0712) (Table 2) and (8, 15, 1.5196, 3.0703) 
(Table 3) for  and , respectively, when 
MRL0 = 250, m = 20,  = 9, and δopt = 0.8. The optimal 
VSS  chart, based on estimated process parameters, is 
shown in Figure 4 for monitoring the Phase-II resistivity 
measurements when  and . To 
provide a comprehensive understanding of the operational 
mechanism for the optimal VSS  chart for  
and  in this application, we offer the following 
explanations. When using the optimal VSS  chart with 

=  = 6, the first  = 4.4239 is calculated based 
on  =  = 6 measurements, and its corresponding 

 = 1.0087 is computed using Equation (3). Note that 
 in this example is the first subgroup ( ) in Phase-

II process monitoring. Since  falls within (W, K], the 

false alarm. Note that  represents the gamma function. 
Using Equation (10), the corresponding ARL0 = 459.64 
(equivalent to MRL0 = 250) is computed with m = 20, δopt 
= 0.8, and  = 9, based on the optimal charting parameters 
( , , W, K) = (6, 15, 0.9858, 3.0712) for  
(Table 2). Given ARL0 = 459.64, a false alarm is expected 
to occur at each sampling point with a probability of 
0.002176. As a result, the probability of encountering a 
false alarm occurring at least once over 40 sampling points 
is calculated as FAP = . 
Figure 3 provides the complete evaluation of the Phase-I 
data through the Bonferroni-adjusted  and  charts. Based 
on Figure 3, it indicates that the Phase-I data is operating 
under the in-control conditions. Then, the estimated in-
control mean  Ω-cm, and standard deviation 

 Ω-cm are calculated by employing 
Equations (1) and (2), respectively.

(a)                                                                      (b)

FIGURE 3. An analysis of the Bonferroni-adjusted (a) and (b) charts for evaluating the 
Phase-I data
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FIGURE 4. The VSS chart with estimated process parameters for monitoring the Phase-II 
data when (a) = and (b) =
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next sample  is collected and calculated using  = 
 = 15. The corresponding  = 0.8343 is computed, 

which lies within [–W, W]. Subsequently,  =  = 6 
is used to calculate the next sample  with 
the respective  = – 0.2579. This process continues 
until sample  = 4.4983, where = 4.4659 falls within  
(K, ). At this point, the optimal VSS  chart with  

 =  produces the first out-of-control signal at the 31st 
subgroup (Figure 4(a) and the boldfaced values in Table 6). 
Other out-of-control samples are detected by the chart at 
32nd and 35th subgroups. 

In a similar manner, when employing the optimal 
VSS  chart with  =  = 15, the first  = 4.3893 in 
Phase-II process monitoring, is computed using =15 
collected measurements. As its respective  0.2575 falls 
within [–W, W], the subsequent sample  is collected 
and calculated as 4.4131 using  =  = 8. The 
corresponding  is then determined to be 0.8595. This 
process continues until sample  = 4.4916, where  = 
4.2098 is located within (K, ). At this stage, the optimal 
VSS  chart with  =  immediately generates the first 
out-of-control condition at 30th subgroup. The remaining 
out-of-control points are detected at the 31st – 33rd and 
35th subgroups (Figure 4(b) and the boldfaced values in  
Table 6). Once the out-of-control cases are successfully 
detected, appropriate and immediate investigations are 
conducted to determine and omit the assignable cause(s). 

Notably, the optimal MRL-based VSS  chart using 
estimated process parameters for  signals an out-
of-control sample more quickly than the corresponding 
VSS  chart with . This observation indicates that 
opting for a larger sample size in the first subgroup can 
enhance the detection capabilities of the VSS  chart using 
estimated process parameters.

CONCLUSIONS

Current SPC literature predominantly emphasises on 
the ARL criterion for optimising control charts, which 
may lead to overlooking some important aspects of the 
control chart’s overall effectiveness. This is absolutely 
true as we show that the ARL-based VSS  chart, when 
process parameters are estimated, results in high false 
alarm rates and significantly increased operational costs. 
Therefore, we argue that the ARL metric is a misleading 
measure when applying to control charts using estimated 
process parameters for practitioners due to economical 
and operational reasons. This paper introduces theoretical 
frameworks for designing the VSS  chart using estimated 
process parameters, with an emphasis on the MRL and 
other percentiles of the run-length distribution, such as  

, , , and . These percentiles provide 
more useful information and practical benefits for 
practitioners in industrial settings. Two new optimal 
statistical designs for the VSS  charts using estimated 

process parameters are implemented by minimising the 
MRL1 and EMRL metrics for known and unknown shift-
size conditions, respectively. These designs consider 
two schemes, where  and . The EMRL 
criterion is evaluated for its ability to address the random 
shift-size issue, which is commonly encountered in 
practical environments. 

Moreover, Tables 2 to 5 provide ready-to-used optimal 
charting parameters for the proposed VSS  chart using 
estimated process parameters, tailored to various choices 
of Phase-I samples m. The intention of these tables is 
to facilitate and support practitioners in the practical 
implementation of the proposed charts. Our findings 
indicate that, when estimating process parameters, the 
MRL-based and EMRL-based VSS  charts produce a 
minimised false alarm rate and offer simpler interpretations 
for practitioners in analysing the behaviour of the run-
length distribution, compared to the VSS  chart designed 
using the ARL criterion. From the SPC perspective, a 
reduced false alarm rate is preferable for the proposed 
optimal VSS  chart using estimated process parameters. 
The rationale is that it reliably guarantees better resource 
management for manufacturers, such as avoiding 
unnecessary time spent to investigate non-existent root 
causes in the process. Furthermore, to attain comparable 
detection capability to that of the scenario with known 
process parameters, practitioners are advised to select 

 for the proposed VSS  chart under the scenario of 
estimated process parameters. Additionally, the associated 
sampling costs should be considered in this selection 
process. An application using the resistivity measurements 
of silicon epitaxial wafers, is employed to demonstrate 
the practicality and reliability of the MRL-optimised VSS 

 chart in real-world situations when estimating process 
parameters.

For future research directions, researchers are 
encouraged to explore the MRL- and EMRL- optimised 
VSI  chart using estimated process parameters. The 
VSI scheme offers dynamic adaptability, enabling real-
time adjustments to sampling frequency based on process 
behaviour, thereby improving the responsiveness and 
accuracy of process monitoring. Alternatively, examining 
the influences of parameter estimation on the performance 
of the VSS median chart, along with utilising MRL and 
EMRL metrics could be another valuable avenue for future 
investigation. The median offers a more reliable measure 
of central tendency in control chart settings, especially with 
skewed distributions or outliers. 
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