Sains Malaysiana 37(4): 389-394(2008)

 

Size-controlled Synthesis and Characterization of Fe3O4

Nanoparticles by Chemical Coprecipitation Method

(Sintesis Saiz Terkawal dan Pencirian Nanozarah Fe3O4 Melalui

Kaedah Kepemendakan Kimia)

 

 

Chia Chin Hua, Sarani Zakaria, R. Farahiyan, Liew Tze Khong,

 Kien L. Nguyen, Mustaffa Abdullah & Sahrim Ahmad

School of Applied Physics, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Kien L. Nguyen

Australian Pulp and Paper Institute

Department of Chemical Engineering

Monash University, Clayton VIC 3800, Australia

 

Received: 19 February 2008 / Accepted:  6 March 2008

 

 

ABSTRACT

Magnetite (Fe3O4) nanoparticles have been synthesized using the chemical coprecipitation method. The Fe3O4 nanoparticles were likely formed via dissolution-recrystallization process. During the precipitation process, ferrihydrite and Fe(OH)2 particles formed aggregates and followed by the formation of spherical Fe3O4 particles. The synthesized Fe3O4 nanoparticles exhibited superparamagnetic behavior and in single crystal form. The synthesis temperature and the degree of agitation during the precipitation were found to be decisive in controlling the crystallite and particle size of the produced Fe3O4 nanoparticles. Lower temperature and higher degree of agitation were the favorable conditions for producing smaller particle. The magnetic properties (saturation magnetization and coercivity) of the Fe3O4 nanoparticles increased with the particle size.

 

Keywords:  Chemical coprecipitation; ferrite; magnetite; nanoparticles

 

 

ABSTRAK

Nanozarah magnetit (Fe3O4) telah disintesis dengan menggunakan kaedah pemendakan kimia. Nanozarah Fe3O4 terbentuk melalui proses pelarutan-penghabluran. Semasa proses pemendakan, zarah-zarah ferihidrit dan Fe(OH)2 membentuk agregat and diikuti dengan pembentukan zarah-zarah magnetit yang berbentuk sfera. Nanozarah-nanozarah magnetit yang terbentuk menunjukkan sifat superparamagnet dan berhablur tunggal. Suhu sintesis dan darjah pengacauan semasa proses pemendakan memainkan peranan penting dalam pengawalan saiz hablur dan saiz zarah nanozarah Fe3O4. Suhu rendah dan darjah pengacauan yang tinggi merupakan keadaan yang sesuai untuk menghasilkan zarah dengan saiz yang kecil. Sifat kemagnetan tepu dan koersiviti bagi nanozarah Fe3O4 didapati meningkat dengan peningkatan saiz zarah.

 

Kata kunci: Ferit; magnetit; nanozarah; kepemendakan kimia

 

REFERENCES/RUJUKAN

 

Belleville, P., Jolivet, J.P., Tronc, E. & Livage, J. 1992. Crystallization of ferric hydroxide into spinel by adsorption on colloidal magnetite. Journal of Colloid and Interface Science 150: 453-460.

Bhattacharya, I.N., Pradhan, J.K., Gochhayat, P.K. & Das, S.C. 2002. Factors controlling precipitation of finer size alumina trihydrate. International Journal of Mineral Processing 65: 109-124.

Bilkov¨¢, Z., Slov¨¢kov¨¢, M., Minc, N., F¨¹tterer, C., Cecal, R., Hor¨¢k, D., Benes, M., le Potier, I., Krenkov¨¢, J., Przybylski, M. & Viovy, J. 2006. Functionalised magnetic micro- and nanoparticles: Optimization and application to ¦Ì-chip trypsin digestion. Electrophoresis 27: 1811-1824.

Bucak, S., Jones, D.A., Laibinis, P.E. & Hatton, T.A. 2003. Protein separations using colloidal magnetic nanoparticles. Biotechnology Progress 19: 477-484.

Cornell, R.M., & Schneider, W. 1989. Formation of goethite from ferrihydrite at physiological pH under the influence of cysteine. Polyhedron 8: 149-155.

Cornell, R.M., & Schwertmann, U. 2003. The iron oxides: Structure, properties, reactions, occurences and users. Weimheim: VCH Publishers.

Enomoto, N., Akagi, J.I.  & Nakagawa, Z. 1996. Sonochemical powder processing of iron hydroxides. Ultrasonics Sonochemistry 3: 97-103.

Gokon, N., Shimada, A., Kaneko, H., Tamaura, Y., Ito, K. & Ohara, T. 2002. Magnetic coagulation and reaction rate for the aqueous ferrite formation reaction. Journal of Magnetism and Magnetic Materials 238: 47-55.

Horng, H.E., Hong, C.Y., Yang, S.Y., & Yang, H.C. 2001. Novel properties and applications in magnetic fluids. Journal of Physics and Chemistry of Solids 62: 1749-1764.

Hou, Y.Y. & Williams, R.A. 2002. Magnetic stabilisation of a liquid fluidised bed. Powder Tech. 124: 287-294.

Huang, Z.B. & Tang, F.Q. 2005. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. Journal of Colloid and Interface Science 281: 432-436.

Huber, D.L. 2005. Synthesis, properties and application of iron nanoparticles. Small 1: 482-501.

Ito, A., Kuga, Y., Honda, H., Kikkawa, H., Horiuchi, A., Watanabe, Y. & Kobayashi, T. 2004. Magnetite nanoparticles-loaded anti-HER2 immunolipsomes for combination of antibody therapy with hyperthemia. Cancer Letters 212: 167-175.

Jeong, J., Lee, S., Kim, J. & Sung, S. 2004. Magnetic Properties of ¦Ã-Fe2O3 Nanoparticles made by coprecipitation method. Physica Status Solidi (b) 241: 1593-1596.

Jolivet, J.P., Chan¨¦ac, C. & Tronc, E. 2004. Iron oxide chemistry. From molecular clusters to extended solid networks. Chemical Communications: 481-487.

LaConte, L., Nitin, N. & Bao, G. 2005. Magnetic nanoparticles probes. Nanotoday May: 32-38.

Lee, Y., Lee, J., Bae, C., Park, J., Noh, H., Park, J. & Hyeon, T. 2005. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Advanced Functional Materials 15: 503-509.

Misawa, T., Hashimoto, K. & Shimodaira, S. 1974. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corrosion Science 14: 131-149.

Miyamoto, H. 1976. The magnetic properties of Fe(OH)2. Materials Research Bulletin 11: 329-336.

Nedkov, I., Kolev, S., Zadro, K., Krezhov, K. & Merodiiska, T. 2004. Crystalline anisotropy and cation distribution in nanosized quasi-spherical ferroxide particles. Journal of Magnetism and Magnetic Materials 272-276: 1175-1176.

Ngomsik, A., Bee, A., Draye, M., Cote, G. & Cabuil, V. 2005. Magnetic nano- and microparticles for metal removal and environmental applications: A review.  Comptes Rendus Chimie 8: 963-970.

Park, S., Kim, J. & Kim, C. 2004. Preparation of photosensitiser-coated magnetic fluid for treatment of tumour. Journal of Magnetism Magnetic Materials 272-276: 2340-2342.

Qu, S., Yang, H., Ren, D., Kan, S., Zou, G., Li, D. & Li, M. 1999. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. Journal of Colloid and Interface Science 215: 190-192.

Schwertmann, U., Friedl, J., & Stanjek, H. 1999. From Fe(III) Ions to Ferrihydrite and then to Hematite. Journal of Colloid and Interface Science 209: 215-223.

Sharma, P., Brown, S., G., W., Santra, S. & Moudgil, B. 2006. Nanoparticles for bioimaging. Journal of Colloid and Interface Science 123-126: 471-485.

Sugimoto, T., 2000. Fine particles. New York: Marcel Dekker Inc.

Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzales-Carreno, T. & Serna, C.J. 2006. Synthesis, properties, and biomedical applications of magnetic nanoparticles, in Handbook of Magnetic Materials: Buschow, K.H.J. (ed),. Vol. vol 16.

Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T.  & Serna, C.J. 2003. The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics 36: 182-197.

Tronc, E., Belleville, P., Jolivet, J.P. & Livage, J. 1992. Transformation of ferric hydroxide into spinel by Fe(II) adsorption. Langmuir 8: 313-319.

Wang, G.H., Whittaker, G., Harrison, A.  & Song, L.J. 1998. Preparation and mechanism of formation of acicular goethite-magnetite particles by decomposition of ferric and ferrous salts in aqueous solution using microwave radiation. Materials Research Bulletin 33: 1571-1579.

Wang, J., Deng, T. & Dai, Y. 2005. Study on the processes and mechanism of the formation of Fe3O4 at low temperature. Journal of Alloys and Compounds 390: 127-132.

Yu, S. & Chow, G.M. 2004. Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. Journal of Materials Chemistry 14: 2781-2786.

 

 

previous