Sains Malaysiana 38(3): 407-411(2009)

 

Hazard Radiologi Radionuklid Tabii Dalam Simen

Portland Semenanjung Malaysia

(Radiological hazard of natural radionuclide in Portland

cement of Peninsular Malaysia)

 

 

Aznan Fazli Ismail*, Muhamad Samudi Yasir, Amran Ab. Majid,

Redzuwan Yahaya, Ismail Bahari

Program Sains Nuklear, Fakulti Sains Dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

Received: 16 July 2008 / Accepted: 23 August 2008

 

 

ABSTRAK

 

Selain daripada batu-batu kecil, batu kerikil dan pasir, simen merupakan salah satu bahan penting untuk membina bangunan. Simen diperbuat daripada campuran batuan dan tanah dan diketahui secara semulajadinya mengandungi radionuklid tabii. Kajian ini bertujuan untuk menentukan aras keradioaktifan tabii serta menilai hazard sinaran yang berpunca daripada radionulid tabii di dalam simen Portland di Malaysia. Sampel simen Portland diperolehi dari kilang pengeluar simen atau dibeli di pasaran tempatan. Kepekatan radionuklid tabii bagi 226Ra (siri 238U), 232Th dan 40K ditentukan dengan menggunakan spektrometri sinar gama. Hasil kajian mendapati julat kepekatan aktiviti bagi 226Ra (siri 238U), 232Th dan 40K masing-masing adalah 7.76 – 82.91 Bq kg-1, 9.79 – 49.37 Bq kg-1 dan 81.89 – 377.10 Bq kg-1. Purata nilai kesetaraan radium berada dalam julat 35.36 ± 0.60 hingga 135.94 ± 15.27 Bq kg-1 manakala julat purata bagi dos setara tahunan dan indeks hazard dalaman adalah masing-masing ialah 80  ± 2 hingga 300 ± 30 µSv tahun-1 dan 0.12 ± 0.00 hingga 0.56 ± 0.07

 

Kata kunci: Hazard sinaran; keradioaktifan tabii; simen Portland

 

 

ABSTRACT

 

Besides bricks, granites and sands cement is one of the main components of building materials Cement is made from a combination of rocks and soils which is known to contain natural radioactivity. The objectives of this study were to determine the level of natural radioactivity and associated radiological hazard caused by natural radioactivity in Malaysia’s Portland cements. Portland cements samples were obtained from the manufacturers or bought directly from local hardware stores. Natural radionuclide concentrations of 226Ra (238U series), 232Th and 40K were determined using gamma-ray spectrometry.  Activity concentrations of 226Ra (238U series), 232Th and 40K were found in the range of 7.76 – 82.91 Bq kg-1, 9.79 – 49.37 Bq kg-1 dan 81.89 – 377.10 Bq kg-1 respectively. Radium equivalent were found in the range of 35.36 ± 0.60 to 135.94 ± 15.27 Bq kg-1 while the average annual equivalent dose and internal hazard index were found in the range of 80  ± 2 to 300 ± 30 µSv year-1 and 0.12 ± 0.00 to 0.56 ± 0.07 respectively.

 

 Keywords : Natural radioactivity; Portland cement;  radiation hazard

 

RUJUKAN

 

Ahmed N.K. 2005. Measurement Of Natural Radioactivity In Building Materials In Qena City, Upper Egypt. Environ. Radioactivity 83: 91–99.

Baretka J., & Mathew P. J. 1985. Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Phys. 48: 87–95.

Fathivand A. A., &  Amidi J. 2007. Assessment of Natural Radioactivity and The Associated Hazard in Iranian Cement. Rad. Prot. Dosimetry. 124(2): 145–147.

IAEA Technical Report No. 295, 1989. Measurement of Radionuclides in Food And The Environment. Vienna: IAEA.

IAEA TECDOC – 566, 1990. The Use of Gamma Ray Data to Define The Natural Radiation Environment. Vienna: IAEA.

ICRP. 1990. International Comission on Radiological Protection. Recomendation of ICRP. Publication 60. New York: Oxford Pergamon Press.

Khalid K. & Hasan M.K. 2001. Natural Gamma-emiting Radionuclides in Pakistani Portland Cement. App. Rad. Iso. 54: 861–865

Krieger. R. 1981. Radioactivity of Construction Materials. Betonwerk + Fertigteil-Techn. 47: 468–473.

Lee E. M., Menezes G., & Finch E. C. 2004. Natural Radioactivity in Building Materials in The Republic of Ireland. Health Phys. 86(4): 378–383.

Lu X., Wang F., Jia X., & Wang L. 2007. Radioactive Analysis and Radiological Hazards of Lime and Cement Fabricated in China. IEEE Transactions on Nuclear Science 54(2): 327–332.

NCRP, 2001. NCRP Report No. 136 Evaluation of The Linear-Nonthreshold Dose-response Model for Ionizing Radiation. Washington DC: NCRP.

NEA-OECD, 1979. Exposure To Radiation From Natural Radioactivity In Building Materials. Report by NAE Group Expert, OECD Paris.

Papastefanou C., Stoulos S. & Manolopoulou M. 2004. The Radioactivity of Building Materials. Radioanal. and Nuc. Chem. 26(3): 367–372.

Petropoulos N.P., Anagnostakis M.J., & Simopoulos S.E., 2002. Photon Attenuation, Natural Radioactivity Content and Radon Exhalation Rate of Building Materials. Environ. Radioactivity 61: 257–269.

Shreve, R.N., 1972. Chemical Process Industries, 3rd Edition. New York: McGraw Hill Book Company.

Slunga E., 1988. Radon Classification of Building Ground. Radiat. Prot. Dosim. 24(114): 39–42.

Stranden E., 1976. Some Aspects on Radioactivity of Building Materials. Phys. Norv. 8: 167–173.

UNSCEAR, 1982. Ionizing Radiation Sources And Biological Effects. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to General Assembly, With Annexes. New York: United Nations.

UNSCEAR, 1993. Sources Effects and Risks of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly on the Effects of Atomic Radiation. New York: United Nations.

UNSCEAR, 2000. Exposures From Natural Radiation Sources. United Nations Scientific Committee on the Effects of Atomic Radiation 2000. Report to General Assembly, With Annexes. New York: United Nations.

Yasir M.S., Majid A. Ab., & Yahaya R. 2007. Study of Natural Radionuclides and its Radiation Hazard Index in Malaysia Building Material. Radioanal. Nucl. Chem. 273: 539-541.

*Corresponding author; email: aznan-sn@yahoo.com

 

 

 

 

previous