Sains Malaysiana 38(3): 407-411(2009)
Hazard Radiologi Radionuklid Tabii Dalam Simen
Portland Semenanjung Malaysia
(Radiological hazard of
natural radionuclide in Portland
cement of Peninsular Malaysia)
Aznan Fazli Ismail*,
Muhamad Samudi Yasir, Amran Ab. Majid,
Redzuwan Yahaya, Ismail
Bahari
Program Sains Nuklear,
Fakulti Sains Dan Teknologi
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor D.E., Malaysia
Received: 16 July 2008 / Accepted: 23 August 2008
ABSTRAK
Selain daripada
batu-batu kecil, batu kerikil dan pasir, simen merupakan salah satu bahan
penting untuk membina bangunan. Simen diperbuat daripada campuran batuan dan
tanah dan diketahui secara semulajadinya mengandungi radionuklid tabii. Kajian
ini bertujuan untuk menentukan aras keradioaktifan tabii serta menilai hazard
sinaran yang berpunca daripada radionulid tabii di dalam simen Portland di
Malaysia. Sampel simen Portland diperolehi dari kilang pengeluar simen atau
dibeli di pasaran tempatan. Kepekatan radionuklid tabii bagi 226Ra
(siri 238U), 232Th dan 40K ditentukan dengan
menggunakan spektrometri sinar gama. Hasil kajian mendapati julat kepekatan
aktiviti bagi 226Ra (siri 238U), 232Th dan 40K
masing-masing adalah 7.76 – 82.91 Bq kg-1, 9.79 – 49.37 Bq kg-1 dan 81.89 – 377.10 Bq kg-1. Purata nilai kesetaraan radium
berada dalam julat 35.36 ± 0.60 hingga 135.94 ± 15.27 Bq kg-1 manakala julat purata bagi dos setara
tahunan dan indeks hazard dalaman adalah masing-masing ialah 80 ± 2 hingga
300 ± 30 µSv tahun-1 dan 0.12
± 0.00 hingga 0.56 ± 0.07
Kata kunci: Hazard
sinaran; keradioaktifan tabii; simen Portland
ABSTRACT
Besides bricks,
granites and sands cement is one of the main components of building materials
Cement is made from a combination of rocks and soils which is known to contain
natural radioactivity. The objectives of this study were to determine the level
of natural radioactivity and associated radiological hazard caused by natural
radioactivity in Malaysia’s Portland cements. Portland cements samples were
obtained from the manufacturers or bought directly from local hardware stores.
Natural radionuclide concentrations of 226Ra (238U
series), 232Th and 40K were determined using gamma-ray spectrometry. Activity concentrations of 226Ra (238U
series), 232Th and 40K were found in the range of 7.76 –
82.91 Bq kg-1, 9.79 – 49.37 Bq kg-1 dan 81.89 – 377.10 Bq
kg-1 respectively. Radium equivalent were found in the range of 35.36 ± 0.60 to 135.94 ± 15.27 Bq kg-1 while the average annual equivalent dose and internal
hazard index were found in the range of 80 ± 2 to 300 ± 30 µSv year-1 and 0.12 ± 0.00 to 0.56 ±
0.07 respectively.
Keywords : Natural radioactivity; Portland cement; radiation hazard
RUJUKAN
Ahmed N.K. 2005. Measurement Of Natural Radioactivity In
Building Materials In Qena City, Upper Egypt. Environ. Radioactivity 83: 91–99.
Baretka J., & Mathew P. J. 1985. Natural Radioactivity of
Australian Building Materials, Industrial Wastes and By-Products. Health Phys. 48: 87–95.
Fathivand A. A., & Amidi J. 2007. Assessment of Natural Radioactivity and The Associated
Hazard in Iranian Cement. Rad. Prot.
Dosimetry. 124(2): 145–147.
IAEA
Technical Report No. 295, 1989. Measurement
of Radionuclides in Food And The Environment. Vienna: IAEA.
IAEA
TECDOC – 566, 1990. The Use of Gamma Ray
Data to Define The Natural Radiation Environment. Vienna: IAEA.
ICRP. 1990. International
Comission on Radiological Protection. Recomendation of ICRP. Publication
60. New York: Oxford Pergamon Press.
Khalid K. & Hasan M.K. 2001.
Natural Gamma-emiting Radionuclides in Pakistani Portland Cement. App. Rad. Iso. 54: 861–865
Krieger. R. 1981. Radioactivity of
Construction Materials. Betonwerk +
Fertigteil-Techn. 47: 468–473.
Lee E. M., Menezes G., & Finch E. C. 2004. Natural Radioactivity
in Building Materials in The Republic of Ireland. Health Phys. 86(4): 378–383.
Lu X., Wang F., Jia X., & Wang L. 2007. Radioactive
Analysis and Radiological Hazards of Lime and Cement Fabricated in China. IEEE Transactions on Nuclear Science 54(2):
327–332.
NCRP, 2001. NCRP Report No. 136 Evaluation of The Linear-Nonthreshold
Dose-response Model for Ionizing Radiation. Washington DC: NCRP.
NEA-OECD, 1979. Exposure To Radiation From Natural
Radioactivity In Building Materials. Report by NAE Group Expert, OECD Paris.
Papastefanou C., Stoulos S. & Manolopoulou M. 2004. The Radioactivity
of Building Materials. Radioanal. and
Nuc. Chem. 26(3): 367–372.
Petropoulos N.P., Anagnostakis M.J., & Simopoulos S.E.,
2002. Photon Attenuation, Natural Radioactivity
Content and Radon Exhalation Rate of Building Materials. Environ. Radioactivity 61: 257–269.
Shreve, R.N., 1972. Chemical Process Industries, 3rd Edition.
New York: McGraw Hill Book Company.
Slunga E., 1988. Radon Classification of Building Ground. Radiat. Prot. Dosim. 24(114): 39–42.
Stranden
E., 1976. Some Aspects on Radioactivity of Building Materials. Phys. Norv. 8: 167–173.
UNSCEAR, 1982. Ionizing
Radiation Sources And Biological Effects. United Nations Scientific
Committee on the Effects of Atomic Radiation. Report to General Assembly, With
Annexes. New York: United Nations.
UNSCEAR, 1993. Sources
Effects and Risks of Ionizing Radiation. United Nations Scientific
Committee on the Effects of Atomic Radiation. Report to the General Assembly on
the Effects of Atomic Radiation. New York: United Nations.
UNSCEAR, 2000. Exposures
From Natural Radiation Sources. United Nations Scientific Committee on the
Effects of Atomic Radiation 2000. Report to General Assembly, With Annexes. New
York: United Nations.
Yasir M.S., Majid A. Ab., & Yahaya R. 2007. Study of
Natural Radionuclides and its Radiation Hazard Index in Malaysia Building
Material. Radioanal. Nucl. Chem. 273:
539-541.
*Corresponding author; email: aznan-sn@yahoo.com
|