Sains
Malaysiana 38(5)(2009): 723–728
Solving Directly Two Point
Boundary Value Problems Using
Direct Multistep Method
(Penyelesaian
Langsung Masalah Nilai Sempadan Dua Titik
Menggunakan
Kaedah Multilangkah Secara Langsung)
Mahanum Diana Jafri1, Mohamed Suleiman2, Zanariah Abdul Majid1*
& Zarina Bibi Ibrahim2
1Institute for Mathematical Research,
Universiti Putra Malaysia, 43400
Serdang, Selangor D.E. Malaysia
Mathematics Department, Faculty
Science, Universiti Putra Malaysia
43400 Serdang, Selangor D.E.
Malaysia
Received: 11 August 2008 / Accepted:
18 November 2008
ABSTRACT
In this
paper we consider solving directly two point boundary value problems (BVPs) for second-order ordinary differential equations (ODEs). We are concerned with solving this problem using multistep
method in term of backward difference formula and approximating the solutions
with the shooting method. Most of the existence researches involved BVPs will reduce the problem to a system of first order ODEs. This approach is very well established but it obviously will
enlarge the system of first order equations. However, the direct multistep
method in this paper will be utilised to obtain a series solution of the
initial value problems directly without reducing to first order equations. The
numerical results show that the proposed method with shooting method can
produce good results.
Keywords:
Backward difference formula; boundary value problem; shooting method
ABSTRAK
Dalam
makalah ini, penyelesaian masalah nilai sempadan dua titik untuk sistem
persamaan peringkat kedua telah diambilkira. Masalah ini
diselesaikan menggunakan kaedah multilangkah secara langsung dalam sebutan
rumus beza ke belakang dan penghampiran kepada penyelesaian menggunakan kaedah
tembakan. Penyelidikan yang sedia ada yang melibatkan masalah nilai
sempadan akan diturunkan ke sistem persamaan peringkat
pertama. Pendekatan ini sangat dikenali tetapi ia akan
meningkatkan saiz sistem persamaan peringkat pertama. Manakala, kaedah
multilangkah secara langsung di dalam makalah ini akan menghasilkan siri penyelesaian untuk masalah nilai awal tanpa diturunkan ke
sistem persamaan peringkat pertama. Hasil berangka
menunjukkan kaedah yang dicadangkan bersama kaedah tembakan dapat menghasilkan
keputusan yang baik.
Kata kunci:
Kaedah tembakan; masalah nilai sempadan; rumus beza ke belakang
REFERENCES
Attili,
B.S. & Syam, M.I. 2008. Efficient
shooting method for solving two point boundary value problem. Chaos, Solitons and Fractals 35: 895-903.
Auzinger,
W., Kneisl, G., Koch, O. & WeinmŸller, E. 2003. A collocation code for singular boundary
value problems in ordinary differential equations. Numerical
Algorithms 33: 27-39.
Faires, D.
& Burden, R.L. 1998. Numerical
Analysis. USA: International Thomson Publishing Inc.
Ha, S.N. 2001. A
nonlinear shooting method for two point boundary value problems. Comput. Math Appl. 42: 1411-20.
Krogh, F.T. 1973. Algorithms
for changing the step size. SIAM J. Numer. Anal. 10(5): 949- 965.
Majid, Z.A.
& Suleiman, M.B. 2006. Direct
integration implicit variable steps method for solving higher order systems of
ordinary differential equations directly. Jurnal Sains Malaysiana 35(2):
63-68.
Majid, Z.A.
& Suleiman, M. 2007. Two point block direct
integration implicit variable steps method for solving higher order systems of
ordinary differential equations. International Conference
of Applied and Engineering Mathematics. Proceeding of the World
Congress on Engineering, WCE 2007, II:
812-815.
Malathi, V. 1999. Solving boundary value problems for ordinary differential
equations using direct integration and shooting techniques, Ph.D. Thesis,
Universiti Putra Malaysia, Malaysia.
Omar,
Z. 1999. Developing parallel block methods for solving higher order odes
directly, Ph.D. Thesis, Universiti Putra Malaysia, Malaysia.
Suleiman,
M.B. 1989. Solving higher order odes directly by the direct integration method, Applied Mathematics and Computation 33: 197-219.
*Corresponding author; email: zanariah@science.upm.edu.my
|