Sains Malaysiana 39(3)(2010): 405–412
Profil Aktiviti Laktat Dehidrogenase, Asid
Fosfatase Rintang Tartarat dan Alkalin Fosfatase pada Air Liur Semasa Rawatan
Ortodontik
(Profiles of Lactate dehydrogenase, Tartrate Resistant Acid
Phosphatase and Alkaline Photophatase in Saliva during Orthodontic Treatment)
Shahrul Hisham Zainal Ariffin1*, Mohd Faiz Ellias1,
Rohaya Megat Abdul Wahab2,
Yosni Bakar3 & Sahidan Senafi1
1Pusat Pengajian Biosains dan Bioteknologi Fakulti Sains dan
Teknologi Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D.E., Malaysia
2Jabatan Ortodontik Fakulti Pergigian Universiti Kebangsaan
Malaysia 50300 Kuala Lumpur, Malaysia
3Pusat Pengajian Sains Sekitaran dan Sumber Alam Fakulti Sains dan
Teknologi Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, D.E. Malaysia
Received: 14 July 2009 / Accepted:
7 January 2010
ABSTRAK
Proses pergerakan gigi semasa rawatan ortodontik boleh dikelaskan
kepada empat fasa iaitu pengaktifan (berkait inflamasi terhadap tisu serta
kematian sel), penyerapan, proses berbalik dan pembentukan tulang. Pergerakan
gigi ini berkait rapat dengan perubahan metabolik di sekitar mulut. Objektif
kajian ini adalah untuk menentukan profil penanda biologi enzim di dalam air
liur individu yang menerima rawatan ortodontik iaitu laktat dehidrogenase (LDH)
bagi proses inflamasi, asid fosfatase rintang tartarat (TRAP) bagi proses
penyerapan tulang dan alkali fosfatas (ALP) bagi proses pembentukan tulang.
Sampel air liur diambil daripada 6 individu yang menerima rawatan ortodontik. Aktiviti
kesemua enzim diambil sebelum pendakap dipasang (aktiviti normal) diikuti
dengan hari ke-3, 7, 10, 14, 17, 21, 24, 28 dan 31 selepas pengaktifan. Hasil
kajian mendapati kesemua enzim (LDH, TRAP and ALP) menunjukkan peningkatan yang
signifikan (p≤0.05) selepas rawatan diberikan berbanding aktiviti normal.
LDH didapati meningkat pada peringkat awal rawatan (hari ke-3,7 dan 10), TRAP
pada hari ke 14 dan 17 diikuti dengan ALP pada hari ke-17, 21 dan 24. Sebagai
kesimpulan, profil enzim sepanjang rawatan ortodontik menunjukkan proses
inflamasi berlaku di peringkat awal rawatan diikuti proses penyerapan dan
pembentukan tulang. Selain itu, keseluruhan fasa inflamasi, penyerapan dan
pembentukan tulang ortodontik didapati mengambil masa 24 hari.
Kata kunci : Air liur; enzim; ortodontik; pemodelan tulang
ABSTRACT
During
orthodontic treatment, the progress of tooth movements can be classified into
four stages, i.e. activation (related to tissue inflammation or cells’ death), resorption,
reversal and restructuring of new bones. Tooth movement is related to metabolic
changes around the mouth. The objective of this study was to determine enzymes
profiles from patient’s saliva during orthodontic tooth movement, i.e., lactate
dehydrogenase (LDH) for inflammation, tartrate resistant acid phosphatase
(TRAP) for bone resorption and alkaline phosphatase (ALP) for bone formation. Saliva
samples were collected from 6 orthodontic patients. Activities of all enzymes
were measured before placement of orthodontic fixed appliances (normal
activity) followed with day 3, 7, 10, 14, 17, 21, 24, 28 and 31 after the
braces were activated. All enzymes (LDH, TRAP and ALP) showed significantly
(p≤0.05) higher specific activities as compared to normal. LDH showed the
increment at the early phase of treatment (day 3,7 and 10), TRAP at day 14 and
17 followed by ALP at day 17, 21 and 24. As a conclusion, the profiles of
enzymes activities showed that inflammation occured during early phase of
treatment followed by bone resorption and bone formation. In addition, the
inflammations, resorption and bone formation phases in orthodontic treatment
were found to be completed within 24 days.
Keywords : Bone remodeling; enzymes; orthodontic; air liur
REFEENCES
Asma, A.A.A., Rohaya, M.A.W.
& Shahrul Hisham, Z.A. 2008. Crevicular Alkaline Phosphatase Activity
During Orthodontic Tooth Movement: Canine Retraction Stage. Journal of Medical Sciences 8(3): 228-233.
Atici, K., Yamalik, N., Eratalay,
K. & Etikan, I. 1998. Analysis of gingival crevicular fluid
intracytoplasmic enzyme activity in patients with adult periodontitis and
rapidly progressive periodontitis. A longitudinal study model with periodontal treatment. Journal of Periodontology 69: 1155–1163.
Bradford, M.M. 1976. A rapid and
sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Eni Juliana, A., Rohaya M.A.W.,
Sahidan, S., Nik Marzuki, S. & Shahrul Hisham, Z.A. 2009. Molecular
Existence of Mature Odontoblast and Osteoblast Cells In Adult Human Pulp Tissues. Asian Journal of Biochemistry 4(2): 36-44
Gunther, T. & Shinke, T.
2000. Mouse genetics have uncovered new paradigm in bone biology. TEM 11: 189-193.
Halleen, J.M., Alatalo, S.L.,
Suominen, H., Cheng, S., Janckila, A.J. & Vaananen, H.K. 2000.
Tartrate-Resistant Acid Phosphatase 5b: A Novel Serum Marker of Bone
Resorption. Journal of Bone and Mineral
Research 15: 1337–1345.
Hill, P.A. 1998. Bone remodeling. British Journal of Orthodontics 25: 101-107. Intan Zarina, Z.A., Shahrul Hisham, Z.A., Rohaya,
M.A.W., Sahidan, S. & Zaidah, Z.A. 2008.
Osteoclast and Osteoblast Development
of Mus musculus Haemopoietic Mononucleated Cells. Journal of Biological Sciences 8(3): 506-516.
Janckila, A.J., Nakasato, Y.R.,
Neustadt, D.H. & Yami, L.T. 2003. Disease-Specific Expression of
Tartrate-Resistant Acid Phosphatase Isoforms. Journal of Bone and Mineral Research 18: 1916–1919.
Krishnan, V. & Davidovitch,
Z. 2006. Cellular, molecular, and tissue-level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics 129: 469e.1- 460e.32
Melsen, B. 1999. Biological
reaction of alveolar bone to orthodontic tooth movement. Angle Orthodontic 69: 151- 158.
Numabe, Y., Hisano, A., Kamoi,
K., Yoshic, H., Ito, K., Karihara, H. & Nomura, Y. 2004. Analysis of air
liur for periodontal diagnosis and monitoring. Periodontology 40: 115-119.
Perinetti, G., Paolantonio, M., D’Attilio,
M., D’Archivio, D., Tripodi, D. & Festa, F. 2002. Alkaline phosphatase
activity in gingival crevicular fluid during human orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics 122: 548–556.
Perinetti, G., Serra, E.,
Paolantonio, M., Bruè, C., Di Meo, S., Filippi, M.R., Festa, F., & Spoto,
G. 2005. Lactate dehydrogenase activity in human gingival crevicular fluid during
orthodontic treatment: A controlled, short-term longitudinal study. Journal of Periodontology 76(3): 411- 417.
Perinetti, G., Varvara, G.,
Salini, L. & Tetè, S. 2005. Alkaline phosphatase activity in dental pulp of
orthodontically treated teeth. American Journal of Orthodontics
and Dentofacial Orthopedics 128: 492-496.
Serra, E., Perinetti, G., D’Attilio,
M., Cordella, C., Paolantonio, M., Festa, F. & Spoto, G. 2003. Lactate
dehydrogenase activity in gingival crevicular fluid during orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics 124(2): 206-211.
Stucki, U., Schnid, J., Hammerle,
C. & Lang, N. 2001. Temporal and local appearance of alkaline phosphatase
activity in early stages of guided bone regeneration. Clinical Oral Implants Research 12: 121-127.
Wang, W., Sun, X. & Jin, W.
2003. Determination of lactate dehydrogenase in human erythrocytes by
capillary electrophoresis with electrochemical detection. Journal of Chromatography B 798: 175–178.
*Corresponding author; email: hisham@ukm.my
|