Sains Malaysiana 39(3)(2010): 453–457
Pencirian Ruang Jalur Fotonik Nanorod Silikon
(Photonic Bandgap Characterization of Silicon Nanorods)
Mohd Syuhaimi Ab Rahman, Noor Azie Azura Binti Mohd Arif*
Jabatan Elektrik, Elektronik & Sistem, Fakulti Kejuruteraan & Alam Bina
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E., Malaysia
Sahbudin Shaari
Institute Kejuruteraan Mikro & Nanoelektronik (IMEN)
Fakulti Kejuruteraan & Alam Bina, Universiti Kebangsaan Malaysia
43600 Bangi,
Selangor, D.E., Malaysia
Received: 14 January 2009 / Accepted: 4
September 2009
ABSTRAK
Hablur fotonik menjadi tarikan dalam bidang sains dan teknologi berikutan cirinya yang unik. Kajian ini bertujuan untuk menentukan struktur jalur hablur fotonik akibat perubahan saiz nanorod silikon. Kajian dijalankan dengan menggunakan perisian Bandsolve RSoft. Perisian ini menggunakan pendekatan Plane Wave Expansion Method (PWEM) bagi mengira struktur jalur fotonik. Saiz nanorod silikon yang digunakan adalah dari 0.5 μm hingga 0.05 μm. Hasil yang didapati menunjukkan hanya pada saiz 0.1 μm sehingga 0.4 μm sahaja yang mempamerkan kawasan jalur terlarang.
Kata kunci: Hablur fotonik; jalur terlarang; nanorod silikon
ABSTRACT
Photonic crystals become more attractive in
science and technology because of their unique properties. The objective of
this research was to study the effect of the size of silicon nanorod in the photoni band
structure. This research was carried out by using the RSoft BandSOLVE software. This software uses the Plane Wave Expansion Method (PWEM) to calculate the band structure of photonic
crystal. The silicon nanorods used in this work
ranged from 0.05 μm to 0.5 μm.
The results showed that band structure has a forbidden band for nanorod with size from 0.1 to 0.4 μm.
Keywords: Forbidden band; photonic crystals;
silicon nanorod
REFERENCES
Andries, M.J. 2002.
Silicon Photonic Crystal and Spontaneous Emission. Ph. D. Thesis Utrecht
University.
Arif, N.A.A.M., Rahman, M.S.A. & Shaari, S. 2008. The Influence of dielectric in one
dimensional (1D) photonic 457 crystal band structure: case study. Proceedings
of Student Conference on Research and Development. 191-1-191-4.
Bienstman, P., Assefa, S.,
Johnson, S.G. & Joannopoulos,
J.D., Petrich, G.S. & Kolodziejski, L. A. 2003. Taper structures for coupling
into photonic crystal slab waveguide. J. Opt. Soc. Am. 20: 1817-1821.
Chang, X., Cao, J., Ji,
H., Fang, B., Feng, J., Pan, L., Zhang, F. &
Wang, H. 2005. Solvotherma Synthesis of 3D Photonic Crystals
Based On ZnS/Opal System. Materials Chemistry and
Physics 89: 6-10.
Johnson, S.G. 2001.
Photonic crystals: From theory to practice. Tesis PhD. Massachusetts Institute of Technology.
Johnson, S.G. & Joannopoulos, J.D. 2003. Introduction to Photonic
Crystal: Bloch’s Theorem, Band Diagrams and Gaps.
http://ab-initio.mit.edu/photons/tutorial/photonicintro. pdf.
King, J.S., Heineman, D., Graugnard, E. &
Summers, C.J. 2005. Atomic Layer Deposition In Porous
Structures: 3D Photonic Crystals. Applied Surface Science 244: 511-516.
Liddell, C.M.,
Summers, C.J. & Gokhale,
A.M. 2003. Stereological estimation of the morphology distribution of ZnS clusters for photonic crystal applications. Material
Characterization 50: 69-79.
Liddell, C.M. &
Summers, C.J. 2004. Nonspherical ZnS colloidal building blocks for three-dimensional
photonic crystal. Journal of Colloid and Interface 274: 103-106.
Lourtioz, J.M., Benisty, H., Berger, V., Gerard, J.M., Maystre, D. & Tchelnokov,
A. 2005. Photonic Crystals. Berlin Heidelberg: Springer.
Paras, N.P. 2004. Nanophotonics. New Jersey: Wiley- Interscience.
Ye, Y.H., Mayer, T.S., Khoo, I.C., Divliansky, I.B., Abrama, N. & Mallouk, T.E. 2002. Self- assembly of three-dimensional photonic-crystals
with air-core line defects. J. Mater. Chem.12: 3637–3639.
*Corresponding author; email:
azieazura_1985@hotmail.com
|