Sains Malaysiana 39(3)(2010): 453–457

 

Pencirian Ruang Jalur Fotonik Nanorod Silikon

(Photonic Bandgap Characterization of Silicon Nanorods)

 

Mohd Syuhaimi Ab Rahman, Noor Azie Azura Binti Mohd Arif*

Jabatan Elektrik, Elektronik & Sistem, Fakulti Kejuruteraan & Alam Bina

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E., Malaysia

 

Sahbudin Shaari

Institute Kejuruteraan Mikro & Nanoelektronik (IMEN)

Fakulti Kejuruteraan & Alam Bina, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, D.E., Malaysia

 

Received: 14 January 2009 / Accepted: 4 September 2009

 

 

ABSTRAK

 

Hablur fotonik menjadi tarikan dalam bidang sains dan teknologi berikutan cirinya yang unik. Kajian ini bertujuan untuk menentukan struktur jalur hablur fotonik akibat perubahan saiz nanorod silikon. Kajian dijalankan dengan menggunakan perisian Bandsolve RSoft. Perisian ini menggunakan pendekatan Plane Wave Expansion Method (PWEM) bagi mengira struktur jalur fotonik. Saiz nanorod silikon yang digunakan adalah dari 0.5 μm hingga 0.05 μm. Hasil yang didapati menunjukkan hanya pada saiz 0.1 μm sehingga 0.4 μm sahaja yang mempamerkan kawasan jalur terlarang.

 

Kata kunci: Hablur fotonik; jalur terlarang; nanorod silikon

 

 

ABSTRACT

 

 Photonic crystals become more attractive in science and technology because of their unique properties. The objective of this research was to study the effect of the size of silicon nanorod in the photoni band structure. This research was carried out by using the RSoft BandSOLVE software. This software uses the Plane Wave Expansion Method (PWEM) to calculate the band structure of photonic crystal. The silicon nanorods used in this work ranged from 0.05 μm to 0.5 μm. The results showed that band structure has a forbidden band for nanorod with size from 0.1 to 0.4 μm.

 

Keywords: Forbidden band; photonic crystals; silicon nanorod  

 

REFERENCES

 

Andries, M.J. 2002. Silicon Photonic Crystal and Spontaneous Emission. Ph. D. Thesis Utrecht University.

Arif, N.A.A.M., Rahman, M.S.A. & Shaari, S. 2008. The Influence of dielectric in one dimensional (1D) photonic 457 crystal band structure: case study. Proceedings of Student Conference on Research and Development. 191-1-191-4.

Bienstman, P., Assefa, S., Johnson, S.G. & Joannopoulos, J.D., Petrich, G.S. & Kolodziejski, L. A. 2003. Taper structures for coupling into photonic crystal slab waveguide. J. Opt. Soc. Am. 20: 1817-1821.

Chang, X., Cao, J., Ji, H., Fang, B., Feng, J., Pan, L., Zhang, F. & Wang, H. 2005. Solvotherma Synthesis of 3D Photonic Crystals Based On ZnS/Opal System. Materials Chemistry and Physics 89: 6-10.

Johnson, S.G. 2001. Photonic crystals: From theory to practice. Tesis PhD. Massachusetts Institute of Technology.

Johnson, S.G. & Joannopoulos, J.D. 2003. Introduction to Photonic Crystal: Bloch’s Theorem, Band Diagrams and Gaps. http://ab-initio.mit.edu/photons/tutorial/photonicintro. pdf.

King, J.S., Heineman, D., Graugnard, E. & Summers, C.J. 2005. Atomic Layer Deposition In Porous Structures: 3D Photonic Crystals. Applied Surface Science 244: 511-516.

Liddell, C.M., Summers, C.J. & Gokhale, A.M. 2003. Stereological estimation of the morphology distribution of ZnS clusters for photonic crystal applications. Material Characterization 50: 69-79.

Liddell, C.M. & Summers, C.J. 2004. Nonspherical ZnS colloidal building blocks for three-dimensional photonic crystal. Journal of Colloid and Interface 274: 103-106.

Lourtioz, J.M., Benisty, H., Berger, V., Gerard, J.M., Maystre, D. & Tchelnokov, A. 2005. Photonic Crystals. Berlin Heidelberg: Springer.

Paras, N.P. 2004. Nanophotonics. New Jersey: Wiley- Interscience.

Ye, Y.H., Mayer, T.S., Khoo, I.C., Divliansky, I.B., Abrama, N. & Mallouk, T.E. 2002. Self- assembly of three-dimensional photonic-crystals with air-core line defects. J. Mater. Chem.12: 3637–3639.

 

*Corresponding author; email: azieazura_1985@hotmail.com

 

 

previous