Sains Malaysiana 39(3)(2010):
495–504
Analytical
Solution for Cauchy Reaction-Diffusion Problems
by
Homotopy Perturbation Method
(Penyelesaian Beranalisis Bagi
Masalah Tindak Balas-resapan Cauchy dengan Kaedah Usikan Homotopi)
M.S.H. Chowdhury
Department of Science in
Engineering, Faculty of Engineering
International Islamic University
Malaysia 53100 Gombak, Kuala Lumpur, Malaysia
I. Hashim*
Centre for Modelling & Data
Analysis School of Mathematical Sciences
Universiti Kebangsaan Malaysia 43600
Bangi, Selangor D. E., Malaysia
Received: 18 November 2008 / Accepted:
19 October 2009
ABSTRACT
In this paper, the
homotopy-perturbation method (HPM) is
applied to obtain approximate analytical solutions for the Cauchy
reaction-diffusion problems. HPM yields
solutions in convergent series forms with easily computable terms. The HPM is tested for several examples.
Comparisons of the results obtained by the HPM with that obtained by the Adomian decomposition
method (ADM), homotopy
analysis method (HAM) and
the exact solutions show the efficiency of HPM.
Keywords: Cauchy problems;
Homotopy-perturbation method; reaction-diffusion equation
ABSTRAK
Dalam makalah ini, kaedah usikan
homotopi (KUH) diaplikasikan
bagi memperoleh penyelesaian hampiran beranalisis untuk masalah tindak
balas-resapan. KUH menghasilkan
penyelesaian dalam bentuk siri yang menumpu dengan sebutan mudah dihitung. KUH diuji terhadap beberapa contoh masalah.
Perbandingan keputusan yang diperoleh menerusi KUH dengan kaedah penguraian Adomian (KPA), kaedah homotopi analisis (KHA) dan penyelesaian tepat menunjukkan keefisienan KUH.
Kata kunci: Kaedah homotopi
usikan; masalah Cauchy; persamaan tindak balas-resapan
REFERENCES
Abdulaziz, O., Hashim, I. &
Chowdhury, M.S.H. 2008a. Solving variational problems by homotopy-perturbation
method. Int. J. Numer. Meth. Eng. 75(6): 709-721.
Abdulaziz, O., Hashim, I. & Momani,
S. 2008b. Application of homotopy-perturbation method to fractional IVPs. J.
Comput. Appl. Math. 216 :574-584.
Abdulaziz, O., Hashim, I. & Momani,
S. 2008c. Solving systems of fractional differential equations by
homotopy-perturbation method. Phys. Lett. A 372: 451-459.
Chowdhury, M.S.H. & Hashim, I.
2007a. Solutions of a class of singular second-order IVPs by homotopy-perturbation
method. Phys. Lett. A 365 : 439-447.
Chowdhury, M.S.H. & Hashim, I.
2007b. Solutions of timedependent Emden-Fowler type equations by
homotopyperturbation method. Phys. Lett. A 368: 305-313.
Chowdhury, M.S.H. & Hashim, I.
2007c. Application of homotopy-perturbation method to sine-Gordon and Klein- Gordon
and equations. Chaos Solitons Fractals 39: 1928- 1935.
Chowdhury, M.S.H. & Hashim, I.
2007d. Direct solutions of n thorder initial value problems by
homotopy-perturbation method. Int. J. Comput. Math. DOI:
10.1080/00207160802172224 (in press).
Chowdhury, M.S.H., Hashim, I. &
Abdulaziz, O. 2007a. Application of homotopy-perturbation method to nonlinear population
dynamics models. Phys. Lett. A 368: 251-258.
Chowdhury, M.S.H., Hashim, I. &
Momani, S. 2007b. The multistage homotopy-perturbation method: A powerful scheme
for handling the Lorenz system. Chaos Solitons Fractals 40: 1929–1937.
Dehghan, M. & Shakeri, F. 2008.
Application of He’s variational iteration method for solving the Cauchy
reaction-diffusion problem. J. Comput. Appl. Math. 214: 435-446.
Ghori, Q.K., Ahmed, M. & Siddiqui,
A.M. 2007. Application of homotopy perturbation method to squeezing flow of a Newtonian
fluid. Int. J. Nonlin. Sci. Numer. Simul. 8(2): 179-184.
He, J.H. 1999. Homotopy perturbation
technique. Comput. Methods Appl. Mech. Engrg. 178(3/4): 257-262.
He, J.H. 2000. A coupling method of
homotopy technique and perturbation technique for nonlinear problems. Int.
J. Non- Linear Mech. 35 : 37-43.
He, J.H. 2003. A simple perturbation
approach to Blasius equation. Appl. Math. Comput. 140: 217-222.
He, J.H. 2005a. Application of homotopy
perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26:
695-700.
He, J.H. 2005b. Homotopy perturbation
method for bifurcation of nonlinear problems. Int. J. Nonlin. Sci. Numer.
Simul. 6: 207-208.
He, J.H. 2006a. Homotopy perturbation
method for solving boundary value problems. Phys. Lett. A 350: 87-88.
He, J.H. 2006b. Non-perturbative
Methods for Strongly Nonlinear Problems. Germany: Die Deutsche bibliothek.
He, J.H. 2006c. Some asymptotic methods
for strongly nonlinear equations. Int. J. Modern Phys. B 20(10):
1141-1199.
Lesnic, D. 2007. The decomposition
method for Cauchy reactiondiffusion problems. Appl. Math. Lett. 20:
412-418.
Momani, S. & Odibat, Z. 2007.
Homotopy perturbation method for nonlinear partial differential equations of
fractional order. Phys. Lett. A 365 : 345-350.
Odibat, Z. & Momani, S. 2008.
Modified homotopy perturbation method: Application to quadratic Riccati
differential equation of fractional order. Chaos Solitons Fractals 36:
167-174.
Sami Bataineh, A., Noorani, M.S.M. &
Hashim, I. 2008. The homotopy analysis method for Cauchy reaction-diffusion problems. Phys. Lett. A 372: 613-618.
Shakeri, F. & Dehghan, M. 2007.
Inverse problem of diffusion equation by He’s homotopy perturbation method. Phys.
Scr. 75(4): 551-556.
Siddiqui, A.M., Ahmed, M. & Ghori,
Q.K. 2006. Couette and Poiseuille flows for non-Newtonian fluids. Int. J.
Nonlin. Sci. Numer. Simul. 7(1): 15-26.
*Corresponding author; email:
ishak_h@ukm.my
|