Sains Malaysiana 39(4)(2010): 655–659
Pembinaan Permukaan Tertutup Licin oleh
Fungsi Ball pada Kubus
(Construction
of Smooth Closed Surfaces by Ball Functions on a Cube)
Diana Sirmayunie Mohd Nasir
Bahagian Hal Ehwal Akademik
Universiti Teknologi Mara Cawangan
Perlis, 02600 Arau Perlis, Malaysia
Abd Rahni Mt Piah*
Pusat Pengajian Sains
Matematik, Universiti Sains Malaysia
11800 USM Pulau Pinang, Malaysia
Received: 25 August 2009 / Accepted:
12 November 2009
ABSTRAK
Dalam Reka
Bentuk Geometri Dibantu Komputer (CAGD), pembinaan permukaan secara asasnya dibentuk daripada koleksi
tampalan permukaan, dengan syarat keselanjaran tertentu diletakkan di antara
tampalan bersebelahan. Sungguhpun pada masa ini tampalan BŽzier hasil darab
tensor digunakan secara meluas dalam kebanyakan sistem CAGD untuk memodel permukaan bentuk bebas, kaedah ini hanya boleh
digunakan untuk memodel permukaan tertutup bergenus satu, iaitu permukaan yang
setara dengan suatu torus. Permukaan dengan keselanjaran satah tangen dikenali
sebagai permukaan licin secara geometri peringkat satu atau permukaan G1. Makalah ini mengemukakan satu kaedah pembinaan permukaan G1 yang mudah, iaitu permukaan bergenus sifar, dengan menakrif
fungsi bikubik Ball pada muka kubus. Fungsi asas yang dibina mempunyai sokongan
yang kecil dan hasil tambah fungsi asas adalah satu. Fungsi ini berguna untuk
mereka bentuk, mencari hampiran dan menginterpolasi permukaan tertutup mudah
yang genusnya adalah sifar. Kaedah pembinaan sebegini mula diperkenal oleh
Goodman pada tahun 1991 yang telah menakrif fungsi splin-B teritlak bikuadratik
pada mesy sisi empat mudah. Beberapa contoh permukaan/objek yang dihasilkan
melalui kaedah pembinaan yang dikemukakan dipapar dalam makalah ini.
Kata kunci:
Fungsi Ball; interpolasi; keselanjaran geometri; penghampiran; permukaan
tertutup
ABSTRACT
In Computer
Aided Geometric Design (CAGD), surface
constructions are basically formed from collections of surface patches, by
placing a certain continuity condition between adjacent patches. Even though
tensor product BŽzier patches are currently used extensively in most CAGD systems to model free-form surfaces, this method can only be
used to generate closed surface of genus one, i.e. a surface which is
equivalent to a torus. A surface with tangent plane continuity is known as a
first order geometrically smooth surface or a G1 surface. This paper presents a simple G1 surface construction method, i.e. a surface of genus zero, by
defining Ball bicubic functions on faces of a cube. The constructed basis
functions have small support and sum to one. The functions are useful for
designing, approximating and interpolating a simple closed surface of genus
zero. This construction method was first introduced by Goodman in 1991 who
defined biquadratic generalised B-spline functions on faces of a simple
quadrilateral mesh. Several examples of surfaces/objects which are constructed
by the proposed method are presented in this paper.
Keywords:
Approximation; Ball function; closed surface; geometric continuity;
interpolation
REFERENCES
Ball, A.A. 1974. CONSURF, Part 1:
Introduction of the conic lofting tile. Computer-Aided Design 6(4):
243-249.
Ball, A.A. 1975. CONSURF, Part 2:
Description of the algorithms. Computer-Aided Design 7(4): 237-242.
Ball, A.A. 1977. CONSURF, Part 3:
How the program is used. Computer-Aided Design 9(1): 9-12.
Goodman, T. N. T. 1991. Closed
surfaces defined from biquadratic splines. Constructive Approximation 7:
149-160.
Goodman, T.N.T. & Said, H.B.
1991a. Properties of generalized Ball curves and surfaces. Computer-Aided
Design 23(8): 554-560.
Goodman, T.N.T. & Said, H.B.
1991b. Shape preserving properties of the generalized Ball basis. Computer
Aided Geometric Design 8(2): 115-121.
Piah, A.R.M. & Saaban, A. 1999.
Penjanaan permukaan splin-B teritlak yang tertakrif pada kubus dan tetrahedron
dengan menggunakan Mathematica. Prosiding Kolokium Kebangsaan, 27-28 Mei pp. 1-6.
Said, H.B. 1989. A generalized Ball
curve and its recursive algorithm. ACM Trans. Graphics 8(4): 360-371.
Said, H.B. 1990. The BŽzier-Ball
type cubic curves and surfaces. Sains Malaysiana 19 (4): 85-95.
Wang, G.J. 1987. Ball curve of high
degree and its geometric properties. Applied Mathematics: A Journal of
Chinese Universities 2(1): 126-140.
*Corresponding author; email:
arahni@cs.usm.my
|