Sains Malaysiana 39(5)(2010): 769–774

 

Effect of Phosphite Loading on the Mechanical and Fire Properties of Palm-Based Polyurethane

(Kesan Penambahan Fosfit ke Atas Sifat Mekanik dan  Pembakaran Poliuretana Asas Sawit)

 

Khairiah Haji Badri* & Amamer Musbah Redwan

School of Chemical Sciences and Food Technology

Faculty of Science and Technology

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E., Malaysia

 

Received: 14 April 2009 / Accepted: 18 August 2009

 

ABSTRACT

 

Fire-retarding polyurethane (PU) composite was produced by adding 2,4-ditert-butylphenyl phosphite (FR) to palm-based monoester resin with loading percentage of 0, 2, 4, and 6 wt%. The Shore D hardness index increased marginally with increasing FR content. However, the impact and flexural strengths decreased with increasing FR loading attributed to the weak interfacial bonding between FR and PU matrix. The fire test indicated lowering of burning rate (from 5.30 mm s-1 to 2.80 mm s-1) as the loading percentage of FR increased. The combustion enthalpy of the composites also decreased with higher loading percentage of FR.

 

Keywords: Burning rate; fire-retarding; palm-based polyurethane; phosphite

 

ABSTRAK

 

Komposit poliuretana (PU) berperencat api telah dihasilkan dengan menambahkan 2,4- ditertbutilfenil fosfit (FR) ke dalam resin monoester asas sawit dengan penambahan 0, 2, 4 dan 6 % bt. Indeks kekerasan Shore D meningkat dengan peningkatan komposisi FR. Walau bagaimanapun, kekuatan hentaman dan fleksuralnya menurun dengan penambahan FR akibat terhasilnya lekatan antaramuka yang lemah antara FR dan matrik PU. Ujian pembakaran menunjukkan kadar pembakaran menurun (daripada 5.30 mm s-1 ke 2.80 mm s-1) apabila penambahan FR ditingkatkan. Entalpi pembakaran komposit ini menurun dengan peratusan FR yang tinggi.

 

Kata kunci: Fosfit; kadar pembakaran; perencat api; poliuretana asas sawit

 

REFERENCES

 

Arthur, W.A. 1986. A Textbook of Physical Chemistry. 3rd ed. Orlando: Academic press Inc.: 155-159

Badri, K.H, Ahmad, S. & Zakaria, S. 2000. Development of zero ODP rigid polyurethane foam RBD palm Kernel oil 2000 Journal of Material Science letters 19: 1356-1358.

Dvir, H., Gottlieb, M., Daren, S. & Tartakovsky, S. 2003. Optimization of a flame-retarded polypropylene composite. Composites Science and Technology 63: 1865-1875.

Elmore, R.H. & Hedrick, J.L. 1994. Hewlett Packard Application Note: 228-281.

Frank, R., Katherine H., Langford, M.D. & Scrimshaw, J.N. 2001. Polybrominated diphenyl ether (PBDE) flame retardants. The Science of the Total Environment 275: 1-7.

Jang, J., Hyuksung, C., Myonghwan, K. & Hyunje, S. 1998. The effect of flame retardant on the flammability and mechanical properties of paper-sludge/phenolic composite. Polymer Testing 19: 269-279.

Khairiah Haji Badri, Khairul Anwar Mat Amin, Zulkefly Othman, Hairani Abdul Manaf & Nur Khairani Khalid. 2006. The Effect of Filler-to-matrix blending ratio on the mechanical strength of Palm-based biocomposite boards. Polymer International 55:190-195.

Kirk Othmer. 2001. Kirk Othmer Encyclopedia of Chemical Technology. New York: John Wily & Sons.

Korobeinichev, O. P., Sergey, I., Vladimir, M., Shvartsberg & Anatoly, C. 1999. The Destruction Chemistry of Organophosphorus Compounds in Flames—I: Quantitative Determination of Final Phosphorus-Containing Species in Hydrogen-Oxygen Flames. Combustion and Flame 118:718–726.

Korobeinichev, O. P., Shvartsberg, V. M., Shmakov, A. G.,  Bolshova, T. A.,  Jayaweera, T. M., Melius, C. F., Pitz, W. J. &  Westbrook, C. K. 2004. Flame inhibition by phosphorus-containing compounds in lean and rich propane flames. Proceedings of the Combustion Institute 30 (2): 2350 - 2357.

Latere, J. P., Dwan’isa, A. K., Mohanty, M., Misra, L.T., Drzal & Kazemizadeh, M. 2004. Biobased polyurethane and its composite with glass fiber. Journal of Materials Science 39: 1573-4803.

Lewin, M. 2001. Synergism and catalysis in flame retardancy of polymers. Polymer Advanced Technology 12: 215-222.

Liu, Y. & Wang, Q. 2006. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability 91: 3103-3109.

Mohd Ishak Z.A., Aminullah I. & Rozman H.D. 1998. Effect of silan based coupling agent and acrylic acid based compatibilizer on mechanical properties of oil palm empty fruit brunch filled high-density polyethylene composites. Journal of Applied Polymer Science 68:2189-2203

Oelke, C. W. & Zuehlke, R. W. 1969. Laboratory Physical Chemistry. New York: Van Nostrand Reinhold. Company

Quan, P.M. 1973. Polymer Stabilizers. Oxford Chemical Series- The Chemist in Industry. London: Oxford University Press.

Reed, C.S., Jonathan, P. Kiven, T. 2000. Polyurethane/poly [bis (carboxilatophenoxy) phosphazene] blends and their potential as flame retardant materials. Polymer Engineering Science 40: 2.

Rozman H.D, Tay G.S. & Kumar R.N. 2001. Polypropylene-oil palm empty fruit bunch-glass hybrid composites: A preliminary study on the flexural and tensile properties. European Polymer Journal 37: 1283-1291.

Schwetlick, K. 1990. Mechanical of Antioxidant Action of Phosphate and Phosphate Esters. Mechanical of Polymer Degradation and Stabilization. New York: Science Publisher Ltd.

Shelton, J.R. 1997. Stabilization fundamentals in thermal auto oxidation of polymer. Stabilization and Degradation of Polymers: Georgia: American Chemical Society.

Song L.,Yuan H.Y., Tang R.Z. & Zuyao C.W. F. 2005. Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polymer Degradation and Stability 87: 111-116.

Spirckel M., Rengier N., Mortaigne B., Youssef B. & Bunel C. 2002. Thermal degradation and fire performance of new phosphonate polyurethanes. Polymer Degradation and Stability 78: 211-218.

Sumaila, M., Ugheoke, B.I., Timon, L. & Oloyede, T. 2006. A preliminary mechanical characterization of polyurethane lignocelluloses material. Leonardo Journal of Sciences 5(9): 159-166.

Twarowski, A.J. 1993. The Influence of Phosphorus Oxides and Acids on Rate of H+OH Recombination. Combustion and Flame 94: 91-107.

Twarowski, A.J. 1995. Reduction of a Phosphorus Oxide and Acid Reaction Set Combustion and Flame 102(1-2): 41-54.

Wang, P.S., Chiu, W. Chen, L., Denq, B., Don, T. & Chiu, Y. 1999. Thermal degradation behavior and flammability of polyurethanes blended with poly (bispropoxyphosphazene). Polymer Degradation and Stability 66: 307-315.

 

 

 

*Corresponding author; email: kaybadri@ukm.my

 

 

 

previous