Sains Malaysiana 40(11)(2011): 1285–1290

 

Extended Cubic B-spline Method for Linear Two-Point

Boundary Value Problems

(Kaedah Splin-B Kubik Lanjutan untuk Masalah Nilai Sempadan Dua Titik Linear)

 

 

Nur Nadiah Abd Hamid*, Ahmad Abd. Majid & Ahmad Izani Md. Ismail

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang

Malaysia

 

Received: 20 September 2010 / Accepted: 30 March 2011

 

 

ABSTRACT

Second order linear two-point boundary value problems were solved using extended cubic B-spline interpolation method. Extended cubic B-spline is an extension of cubic B-spline consisting of one shape parameter, called λ. The resulting approximated analytical solution for the problems would be a function of λ. Optimization of λ was carried out to find the best value of λ that generates the closest fit to the differential equations in the problems. This method approximated the solutions for the problems much more accurately compared to finite difference, finite element, finite volume and cubic B-spline interpolation methods.

 

Keyword: Cubic B-spline; extended cubic B-spline; spline interpolation; two-point boundary value problem

 

ABSTRAK

Masalah nilai sempadan dua titik linear peringkat kedua diselesaikan menggunakan kaedah interpolasi Splin-B kubik lanjutan. Splin-B kubik lanjutan ialah satu perlanjutan daripada Splin-B kubik yang mengandungi satu parameter bentuk, iaitu λ. Penyelesaian analitikal anggaran yang terhasil kepada masalah tersebut merupakan fungsi λ. Pengoptimuman λ dijalankan untuk mencari nilai λ yang terbaik yang menghasilkan penyesuaian terdekat kepada persamaan pembezaan dalam masalah tersebut. Kaedah ini menganggarkan penyelesaian untuk masalah tersebut dengan lebih tepat berbanding dengan kaedah-kaedah beza terhingga, unsur terhingga, isipadu terhingga dan interpolasi Splin-B kubik.

Kata kunci: Interpolasi splin; masalah nilai sempadan dua titik; Splin-B kubik; Splin-B kubik lanjutan

REFERENCES

Agoston, M.K. 2005. Computer graphics and geometric modeling Implementation and Algorithms: 387-389: 404-445.

Al-Said, E.A. 1998. Cubic spline method for solving two-point boundary-value problems. Journal of Applied Mathematics and Computing 5(3): 669-680.

Albasiny, E.L. & Hoskins, W.D. 1969. Cubic spline solutions to two-point boundary value problems. The Computer Journal 12(2): 151-153.

Asaithambi, N.S. 1995. Numerical Analysis Theory and Practice. Orlando: Saunders College Publishing.

Bickley, W.G. 1968. Piecewise Cubic Interpolation and Two-Point Boundary Problems. The Computer Journal 11(2): 206-208.

Burden, R.L. & Faires, J.D. 2005. Numerical Analysis. 8th ed. Belmont: Brooks/Cole, Cengage Learning.

Caglar, H., Caglar, N. & Elfaituri, K. 2006. B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems. Applied Mathematics and Computation 175(1): 72-79.

Chun, C. & Sakthivel, R. 2010. Homotopy perturbation technique for solving two-point boundary value problems - comparison with other methods. Computer Physics Communications 181:1021-1024.

Fang, Q., Tsuchiya, T. & Yamamoto, T. 2002. Finite difference, finite element and finite volume methods applied to two-point boundary value problems. Journal of Computational and Applied Mathematics 139(1): 9-19.

Fyfe, D.J. 1969. The use of cubic splines in the solution of two-point boundary value problems. The Computer Journal 12(2): 188-192.

Jang, B. 2008. Two-point boundary value problems by the extended Adomian decomposition method. Journal of Computational and Applied Mathematics 219(1): 253-262.

Khan, A. 2004. Parametric cubic spline solution of two point boundary value problems. Applied Mathematics and Computation 154(1): 175-182.

Lu, J. 2007. Variational iteration method for solving two-point boundary value problems. Journal of Computational and Applied Mathematics 207(1): 92-95.

Patrikalakis, N.M. & Maekawa, T. 2002. Shape Interrogation for Computer Aided Design and Manufacturing. New York: Springer-Verlag.

Prautzsch, H., Boehm, W. & Paluszny, M. 2002. Bezier and B-Spline Techniques. New York: Springer.

Salomon, D. 2006. Curves and Surfaces for Computer Graphics. New York: Springer Science+Business Media, Inc.

Xu, G. & Wang, G.-Z. 2008. Extended Cubic Uniform B-spline and [alpha]-B-spline. Acta Automatica Sinica 34(8): 980-984.

 

 

*Corresponding author; email: nurnadiah_abdhamid@yahoo.com

 

 

 

 

 

 

 

 

 

 

 

previous