Sains Malaysiana 40(11)(2011): 1291–1296
Falkner-Skan Solution for Gravity-Driven Film Flow of a Micropolar Fluid
(Penyelesaian Falkner-Skan bagi Aliran Filem Graviti-Terpacu dalam Bendalir Mikrokutub)
Kartini Ahmad
Centre for Foundation Studies, International Islamic University Malaysia, Jalan Universiti,
46350 Petaling Jaya, Selangor, Malaysia
Roslinda Nazar*
Centre for Modelling & Data Analysis, School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia,43600 UKM Bangi
Selangor, Malaysia
Solar Energy Research Institute, Universiti Kebangsaan Malaysia,43600 UKM Bangi
Selangor, Malaysia
Ioan Pop
Faculty of Mathematics
University of Cluj, R-3400 Cluj, CP 253, Romania
Received: 22 February 2010/ Accepted: 23 March 2011
ABSTRACT
In this paper, the steady Falkner-Skan solution for gravity-driven film flow of a micropolar fluid is theoretically investigated. The resulting nonlinear ordinary differential equations are solved numerically using an implicit finite-difference scheme. The results obtained for the skin friction coefficient as well as the velocity and microrotation or angular velocity profiles are shown in table and figures for different values of the material or micropolar parameter K.
Keywords: Boundary layer; Falkner-Skan solution; gravity-driven film flow; micropolar fluid
ABSTRAK
Dalam makalah ini, penyelesaian Falkner-Skan mantap bagi aliran filem graviti-terpacu dalam bendalir mikrokutub dikaji secara teori. Persamaan pembezaan biasa tak linear yang terhasil diselesaikan secara berangka menggunakan skema beza-terhingga tersirat. Keputusan yang diperoleh bagi pekali geseran kulit beserta profil halaju dan profil mikroputaran atau halaju sudut dipersembahkan dalam jadual dan rajah untuk beberapa nilai parameter bahan atau mikrokutub K.
Kata kunci: Aliran filem graviti-terpacu; bendalir mikrokutub; lapisan sempadan; penyelesaian Falkner-Skan
REFERENCES
Abbasbandy, S. & Hayat, T. 2009. Solution of the MHD Falkner-Skan flow by homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation 14: 3591-3598.
Ahmadi, G. 1976. Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. International Journal of Engineering Science 14(7): 639-646.
Andersson, H.I. & Dahl, E.N. 1999. Gravity-driven flow of a viscoelastic liquid film along a vertical wall. Journal of Physics D: Applied Physics 32(14): 1557-1562.
Andersson, H.I. & Irgens, F. 1988. Gravity-driven film flow of power law fluids along vertical walls. Journal of Non-Newtonian Fluid Mechanics 27(2): 153-172.
Andersson, H.I. & Shang, D.Y. 1998. An extended study of the hydrodynamics of gravity-driven film flow of power law fluids. Fluids Dynamics Research 22(6): 345-357.
Andersson, H.I. & Ytrehus, T. 1985. Falkner-Skan solution for gravity-driven film flow. ASME Journal of Applied Mechanics 52: 783-786.
Andersson, H.I., Santra, B. & Dandapat, B.S. 2006. Gravity-driven film flow with variable physical properties. Physics Fluids 18: 083602.
Ariman, T., Turk, M.A. & Sylvester, N.D. 1973. Micro continuum fluid mechanics - a review. International Journal of Engineering Science 11: 905-930.
Ariman, T., Turk, M.A. & Sylvester, N.D. 1974. Application of micro continuum fluid mechanics. International Journal of Enginering Science 12: 273-293.
Asaithambi, A.A. 1997. Numerical method for the solution of the Falkner-Skan equation. Applied Mathematics and Computation 81(2-3): 259-264.
Beg, O.A., Zueco, J. & Chang, T. B. 2011. Numerical analysis of hydromagnetic gravity-driven thin film micropolar flow along an inclined plane. Chemical Engineering Communications 198(3): 312-331.
Brodie, P. & Banks, W.H.H. 1986. Further properties of the Falkner-Skan equation. Acta Mechanica 65: 205-211.
Cebeci, T. & Bradshaw, P. 1988. Physical and Computational Aspects of Convective Heat Transfer. New York: Springer.
Elgazery, N.S. 2008. Numerical solution for the Falkner-Skan equation. Chaos, Solitons & Fractals 35(4): 738-746.
Eringen, A.C. 1966. Theory of micropolar fluids. Journal of Mathematics and Mechanics 16: 1-18.
Eringen, A.C. 2001. Microcontinuum Field Theories. II: Fluent Media. New York: Springer.
Falkner, V.M. & Skan, S.W. 1931. Some approximate solutions of the boundary-layer equations. Philosophical Magazine 12: 865-896.
Haeri, S. & Hashemabadi, S.H. 2009. Experimental study of gravity-driven film flow of non-Newtonian fluids. Chemical Engineering Communications 196(5): 519-529.
Hartree, D.R. 1937. On an equation occurring in Falkner and Skans approximate treatment of the equations of the boundary layer. Mathematical Proceedings of the Cambridge Philosophical Society 33: 223-239.
Ishak, A., Nazar, R. & Pop, I. 2007. Falkner-Skan equation for flow past a moving wedge with suction or injection. Journal of Applied Mathematics and Computing 25(1-2): 67-83.
Kistler, S.F. & Schweizer, P.M. 1997. Liquid Film Coating. London: Chapman and Hall.
Kline, K.A. 1977. A spin-vorticity relation for unidirectional plane flows of micropolar fluids. International Journal of Engineering Science 15: 131-134.
Kuo, B.L. 2003. Application of the differential transformation method to the solutions of Falkner–Skan wedge flow. Acta Mechanica 164: 161-174.
Lan, H., Wegener, J.L., Armaly, B.F. & Drallmeier, J.A. 2010. Developing laminar gravity-driven thin liquid film flow down an inclined plane. Journal of Fluids Engineering 132(8): art no. 081301
Łukaszewicz, G. 1999. Micropolar Fluids: Theory and Application. Basel: Birkhäuser.
Luo, H. & Pozrikidis, C. 2007. Gravity-driven film flow down an inclined wall with three-dimensional corrugations. Acta Mechanica 188(3-4): 209-225.
Magyari, E. 2009. Falkner-Skan flows past moving boundaries: an exactly solvable case. Acta Mechanica 203(1-2): 13-21.
Pantokratoras, A. 2006. The Falkner-Skan flow with constant wall temperature and variable viscosity. International Journal of Thermal Sciences 45(4): 378-389.
Rajagopal, K.R., Gupta, A.S. & Na, T.Y. 1983. A note on the Falkner-Skan flows of a non-Newtonian fluid. International Journal of Non-Linear Mechanics 18(4): 313-320.
Rees, D.A.S. & Bassom, A.P. 1996. The Blasius boundary-layer flow of a micropolar fluid. International Journal of Engineering Science 34(1): 113-124.
Saouli, S. A., Saouli, S., Settou, N. & Meza, N. 2006. Thermodynamic analysis of gravity-driven liquid film along an inclined heated plate with hydromagnetic and viscous dissipation effects. Entropy 8(4): 188-199.
Webb, R.L. 1994. Principles of Enhanced Heat Transfer. New York: Wiley.
Yacoob, N. & Ishak, A. 2010. Stagnation-point flow towards a stretching surface immersed in a micropolar fluid with prescribed surface heat flux. Sains Malaysiana 39(2): 285-290.
Zaturska, M.B. & Banks, W.H.H. 2001. A new solution branch of the Falkner-Skan equation. Acta Mechanica 152(1-4): 197-201.
Zhang, Z., Wang, J. & Shi, W. 2004. A boundary layer problem arising in gravity-driven laminar film flow of power-law fluids along vertical walls. Z. Angew. Math. Phys. (ZAMP) 55(5): 769-780.
*Corresponding author; email: rmn@ukm.my
|