Sains Malaysiana 40(6)(2011): 651–657
A New Fuzzy Version of Euler’s Method for Solving
Differential Equations with Fuzzy Initial Values
(Versi Baru Kaedah Euler Kabur untuk Menyelesaikan Persamaan Pembezaan dengan Nilai-Nilai Awal Kabur)
M. Z. Ahmad*
Institute for
Engineering Mathematics, Universiti Malaysia Perlis,
02000 Kuala Perlis, Perlis, Malaysia
M. K. Hasan
School of
Information Technology, Faculty of Technology and Information Science
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 9
March 2010 / Accepted: 11 October 2010
ABSTRACT
This paper proposes a new fuzzy version of Euler’s method for
solving differential equations with fuzzy initial values. Our proposed method
is based on Zadeh’s extension principle for the
reformulation of the classical Euler’s method, which takes into account the
dependency problem that arises in fuzzy setting. This problem is often
neglected in numerical methods found in the literature for solving differential
equations with fuzzy initial values. Several examples are provided to show the
advantage of our proposed method compared to the conventional fuzzy version of
Euler’s method proposed in the literature.
Keywords: Euler’s method; fuzzy initial value; fuzzy set; optimization
ABSTRAK
Kertas ini mencadangkan satu versi baru kaedah Euler kabur untuk menyelesaikan persamaan pembezaan dengan nilai awal kabur. Pendekatan yang digunakan adalah berasaskan kepada prinsip perluasan Zadeh dengan mengambil kira masalah kebergantungan yang wujud dalam kaedah Euler klasik. Masalah ini sentiasa diabaikan oleh penyelidik-penyelidik dalam menyelesaikan persamaan pembezaan dengan nilai awal kabur. Beberapa contoh diberikan untuk menunjukkan kelebihan kaedah yang dicadangkan dan perbandingan juga dilakukan dengan versi kabur konvensional.
Kata kunci: Kaedah Euler; nilai awal kabur; pengoptimuman; set kabur
REFERENCES
Ahmad, M.Z. & De Baets, B. 2009. A predator-prey model with fuzzy initial
populations. Proceedings of the Joint 13th IFSA
World Congress and 6th EUSFLAT Conference pp. 1311-1314.
Ahmad, M.Z. & Hasan, M.K. 2010. Incorporating optimisation technique into Euler method for solving differential equations with fuzzy
initial values. Proceeding of the 1st Regional Conference on Applied
and Engineering Mathematics: 2-3 June, Penang, Malaysia.
Ahmad, M.Z., Hasan, M.K. &
De Baets, B. 2010. A new method for computing continuous
function with fuzzy variable.Proceeding of International Conference on Fundamental and Appplied Sciences: 15-17 June, Kuala Lumpur, Malaysia
Bonarini, A. & Bontempi, G. 1994. A qualitative
simulation approach for fuzzy dynamical models. ACM Transaction Modelling and Computer Simulation 4:285-313.
Buckley, J.J. & Feuring, T. 2000. Fuzzy differential equations. Fuzzy
Sets and Systems 110: 43-54.
Diniz, G. L., Fernandes, J.F.R., Meyer, J.F.C.A. & Barros, L.C. 2001. A fuzzy Cauchy
problem modelling the decay of the biochemical oxygen
demand in water. Proceding of the Joint 9th IFSA World Congress and 20th NAFIPS
International Conferences pp. 512–516.
Hüllermeier, E. 1997. An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5:
117-137.
Kaleva, O. 1987. Fuzzy differential
equations. Fuzzy Sets and Systems 24: 301-317.
Laksmikantham, V. 2004. Set differential equations versus fuzzy
differential equations. Applied Mathematics and Computation 164:
277-294.
Ma, M., Friedman, M.
& Kandel, A. 1999. Numerical solution of
fuzzy differential equations. Fuzzy Sets and Systems 105:133-138.
Mizukoshi, M.T., Barros, L.C., Chalco-Cano, Y. Román-Flores, H.
& Bassanezi, R.C. 2007. Fuzzy differential
equations and the extension principle. Information Sciences 177:
3627-3635.
Román-Flores, H., Barros,
L. & Bassanezi, R. 2001. A note on Zadeh’s extension principle. Fuzzy Sets and
Systems 117: 327-331.
Seikkala, S. 1987. On the
fuzzy initial value problem. Fuzzy Sets and Systems 24: 319-330.
Zadeh, L.A. 1965. Fuzzy sets. Information
and Control 8: 338-353.
Zadeh, L.A. 1975a. The concept of linguistic
variables and its application to approximate reasoning I, Information Sciences 8: 199-249.
Zadeh, L.A. 1975b. The concept of linguistic
variables and its application to approximate reasoning II, Information
Sciences 8: 301-357.
Zadeh, L.A. 1975c. The concept of linguistic variables and
its application to approximate reasoning III, Information Sciences 9:
43-80.
*Corresponding author, email:
mzaini@unimap.edu.my
|