Sains Malaysiana 40(6)(2011): 659–664
Predictor-Corrector Block Iteration Method for Solving
Ordinary Differential Equations
(Kaedah Lelaran Blok Peramal-Pembetul Bagi Menyelesaikan Persamaan Terbitan Biasa)
Zanariah Abdul Majid* & Mohamed Suleiman
Mathematics Department, Faculty of Science, Universiti Putra Malaysia 43400 Serdang,
Selangor D.E., Malaysia
Received: 5
January 2010 / Accepted: 29 November
2010
ABSTRACT
Predictor-corrector two point block methods are developed for
solving first order ordinary differential equations (ODEs) using variable step
size. The method will estimate the solutions of initial value problems (IVPs)
at two points simultaneously. The existence multistep method involves the
computations of the divided differences and integration coefficients when using
the variable step size or variable step size and order. The block method
developed will be presented as in the form of Adams Bashforth - Moulton type and the coefficients will be stored in the code. The efficiency
of the predictor-corrector block method is compared to the standard variable
step and order non block multistep method in terms of total number of steps,
maximum error, total function calls and execution times.
Keywords: Block method; ordinary differential equations;
predictor corrector block
ABSTRAK
Kaedah dua titik blok peramal-pembetul telah dibangunkan bagi penyelesaian persamaan terbitan biasa peringkat pertama menerusi panjang langkah berubah. Kaedah ini akan memberi nilai penghampiran bagi masalah nilai awal pada dua titik secara serentak. Kaedah multilangkah yang sedia ada melibatkan pengiraan beza pembahagi dan pekali kamiran apabila menggunakan saiz langkah berubah atau saiz langkah berubah dan berperingkat. Kaedah blok yang dibangunkan adalah dalam bentuk Adams Bashforth – Moulton dan pekali akan disimpan di dalam kod. Keberkesanan kaedah blok peramal-pembetul akan di bandingkan dengan kaedah multilangkah bukan blok bagi panjang langkah dan peringkat berubah dari segi jumlah langkah, ralat maksimum, jumlah kiraan fungsi dan masa pelaksanaan.
Kata kunci: Blok peramal pembetul; kaedah blok; persamaan terbitan biasa
REFERENCES
Chu, M.T. &
Hamilton, H. 1987. Parallel Solution of ODE’s by Multiblock Methods, SIAM
J. Sci Stat. Comput.
8:342-354.
Lambert, J.D. 1993. Numerical Methods For Ordinary Differential Systems. The Initial Value Problem. New York: John Wiley & Sons, Inc.
Majid, Z.A. & Suleiman,
M. 2006. 1-Point
Implicit Code of Adams Moulton Type For Solving First Order Ordinary
Differential Equations, Chiang Mei Journal of Sciences 33(2): 153-159.
Majid, Z.A, Suleiman, M.
& Omar, Z. 2006. 3-Point Implicit Block Method for Solving Ordinary
Differential Equations. Bulletin of the Malaysian Mathematical
Sciences Society 29(1/2): 1-9.
Majid, Z.A., Suleiman, M.,
Ismail, F. & Othman, M. 2003. Two Point Implicit Block Method In Half Gauss Seidel For
Solving Ordinary Differential Equations. Jurnal Matematika19(2): 91-100.
Omar, Z., 1999. Developing Parallel
Block Methods For Solving Higher Order ODEs Directly, Ph.D. Thesis,
University Putra Malaysia, Malaysia. (Unpublished)
Rosser, J.B. 1976. Runge Kutta For All Season, SIAM Rev.
9: 417-452.
Shampine, L.F. & Gordon,
M.K. 1975. Computer
Solution of Ordinary Differential Equations: The Initial Value Problem.San Francisco: W. H. Freeman and Company
Suleiman, M.B. 1979. Generalised Multistep
Adams and Backward Differentiation Methods for the Solution of Stiff and
Non-Stiff Ordinary Differential Equations. Ph.D. Thesis. University
of Manchester, UK. (Unpublished)
Worland, P.B. 1976. Parallel
Methods for the Numerical Solutions of Ordinary Differential Equations. IEEE
Transactions on Computers 25: 1045-1048.
*Corresponding author; email: zanariah@math.upm.edu.my
|