Sains
Malaysiana 41(2)(2012): 225–231
Liquefied Residue of Kenaf Core Wood
Produced at Different Phenol-Kenaf Ratio
(Analisis Baki
Pencecairan Kayu Teras Kenaf Terhasil pada Nisbah Fenol-Kenaf yang Berbeza)
Saiful
Bahari Bakarudin, Sarani Zakaria* & Chin Hua Chia
School
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia
43600
Bangi, Selangor D.E. Malaysia
S.
Mohd Jani
Rice
and Industrial Crops Research Center, Malaysian Agricultural Research and
Development Institute (MARDI), Persiaran Mardi-UPM 43400 Serdang, Selangor D.E..
Malaysia
Received:
15 October 2010 / Accepted: 19 August 2011
ABSTRACT
Liquefactions of kenaf core
wood were carried out at different phenol-kenaf (P/k) ratios. Characterizations
of kenaf core wood liquefied residue were carried out to measure the degree of
liquefaction. This provides a new approach to understand some fundamental
aspects of the liquefaction reaction. Functional groups on the raw kenaf core
wood and liquefied residue were examined using Fourier transform infrared
spectroscopy (FTIR). The
crystallinity index of the kenaf wood liquefied residue, which represents
crystallinity changes of the cellulose component after the liquefaction
process, was studied using X-ray diffraction (XRD).
The surface morphology of the wood residue was observed using scanning electron
microscopy (SEM). The thermal
behavior of the residues was analyzed using thermogravimetric analysis (TGA). Abroad peak around
3450-3400 cm-1 representing OH stretching in lignin
start to disappear as P/K ratio increases. The results showed that the higher
the P/K ratio the greater the liquefaction of the lignin component in the kenaf
core wood. The crystallinity index (CrI) on the kenaf liquefied residues increased
with the increase in P/K ratio. SEM images
showed that the small fragments attached on the liquefied kenaf residue surface
were gradually removed as the P/K ratio was increased from 1.5/1.0 to 2.5/1.0,
which is mainly attributed to the greater chemical penetration toward reactive
site of the kenaf fibres. Residue content decreased as the P/K ratio increased
from 1.5/1.0 to 2.5/1.0. TGA results
showed the increase of heat resistance in the residue as the P/K ratio was
increased.
Keywords: Biomass; kenaf
residue; liquefaction; phenol
ABSTRAK
Pencirian baki pencecairan
teras kayu kenaf telah dilakukan untuk mengukur darjah pencecairan. Kajian ini
menyediakan suatu pendekatan baru dalam memahami aspek teras tindak balas
proses pencecairan. Perubahan kumpulan berfungsi di dalam baki pencecairan
dianalisis dengan Spektroskopi Inframerah Transmisi Fourier (FTIR).
Indeks penghabluran yang mewakili perubahan kehabluran selulosa dalam baki
pencecairan telah dikaji melalui analisis pembelauan sinar-X (XRD).
Morfologi permukaan baki pencecairan telah diperhatikan menggunakan mikroskop
imbasan elektron (SEM).
Sifat terma baki pencecairan dianalisis menggunakan analisis termogravimetri (TGA). Analisis menunjukkan
suatu puncak lebar pada 3450-3400 cm-1,
merujuk kepada regangan OH di
dalam lignin. Puncak ini mula menghilang dengan peningkatan nisbah fenol-kenaf
(P/K). Ini menunjukkan lignin mengalami peningkatan kadar tindak balas dengan
pertambahan nisbah fenol-kenaf (P/K). Indeks penghabluran (CrI) mewakili rantau
berhablur selulosa mengalami peningkatan dengan pertambahan nisbah fenol-kenaf
(P/K). Imej SEM menunjukkan
serpihan halus yang melekat pada permukaan baki pencecairan kenaf. Fragmen ini
mulai mengalami penyingkiran dari permukaan baki pencecairan apabila nisbah
fenol-kenaf (P/K) meningkat daripada 1.5/1.0 ke 2.5/1.0 disebabkan peningkatan
penusukan kimia ke atas tapak aktif serabut kenaf. Peratus baki pencecairan
berkurangan dengan peningkatan nisbah fenol-kenaf daripada 1.5/1.0 ke 2.5/1.0.
Analisis TGA menunjukkan
peningkatan rintangan haba di dalam sampel baki pencecairan dengan peningkatan
nisbah P/K.
Kata kunci: Baki kenaf; biojisim; fenol; pencecairan
REFERENCES
Ahmadzadeh, A. & Zakaria, S.
2009. Preparation of novolak resin by liquefaction of oil palm empty fruit
bunch (EFB) and characterization of EFB residue. Polymer-Plastics Technology
and Engineering 48: 10-16.
Alma, M.H. & Basturk, M.A.
2006. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application
to phenol-formaldehyde type adhesive. Industrial Crops and Products 24:
171-176
Amen, C.C., Pakdel, H. & Roy,
C. 2001. Production of monomeric phenols by thermochemical conversion of
biomass: a review. Bioresource Technology 79: 99-277.
Cheng, Y., Wang, Y., Wan, J.
& Ma, Y. 2009. Crystal and pore structure of wheat straw cellulose fiber
during recycling. Cellulose 17: 1-10.
Deraman, M. & Zakaria, S.
1999. X-ray diffraction studies on fiber of oil palm empty fruit bunch and
rubberwood for medium-density fiberboard. Journal of Material Science
Letters 18: 249-253.
Edeerozey, A.M.M., Akil, H.M.,
Azhar, A.B. & Ariffin, M.I. Z. 2006. Chemical modification of kenaf fibers. Materials Letters 61: 2023-2025.
Effendi, A., Gerhauser, H. &
Bridgwater, A.V. 2007. Production of renewable phenolic resins by
thermochemical conversions of biomass: A review. Renewable and Sustainable
Energy Review 12: 2092-2116.
Fengel, D. 1989. Wood,
Chemistry, Ultrastructure, Reactions. Berlin: Walter de Gruyter.
Keshk, S., Suwinarti, W. &
Sameshima, K. 2006. Physicochemical characterization of different treatment
sequences on kenaf bast fiber. Carbohydrate Polymers 65: 202-206.
Kobayashi, M., Asano, T.,
Kajiyama, M. & Tomita, B. 2004. Analysis on residue formation during wood
liquefaction with polyhydric alcohol. Journal Wood Science 50: 407-414.
Khristova, P., Kordsachia, O.,
Patt, R., Khider., T. & Karrar, I. 2002. Alkaline pulping with additives of
kenaf from Sudan. Industrial Crops and Products 15: 229-235.
Lee, S.H. & Ohkita, T. 2003.
Rapid wood liquefaction by supercritical phenol. Wood. Sci. Technol. 37:
29-38.
Oujai, S. & Shanks, R. 2005.
Composition, structural and thermal degradation of hemp cellulose after
chemical treatments. Polym. Degrad. Stab. 89: 327-335
Pan, H., Shupe, T.F. & Hse,
C.Y. 2007. Characterization of liquefied kenaf residues from different
liquefaction conditions. Journal of Applied Polymer Science 105:
3739-3746.
Segal, L., Creely, J.J., Martin,
A.E. & Conrad, C.M. 1959. An empirical method for estimating the degree of
crystallinity of native cellulose using the X-ray diffreactometer. Text Res.
J. 29: 786-794.
Singh, R., Arora, S. & Lal,
K. 1996. Thermal and spectral studies on cellulose modified with various
cresyldichlorothiophosphates. Thermochimia Acta 289: 9-21.
Socrates, G. 2001. Infrared
and Raman Characteristic Group Frequencies Tables and Charts. England:
Academic Press.
Soltes, E.J. 1983. Wood and
Agricultural Residues. New York: Academic Press.
Spinace, M.A.S., Lambert, C.S.,
Fermoselli, K.K.G. & De Paoli, M.A. 2009. Characterization of
lignocellulosic curaua fibres. Carbohydrate Polymers 77: 47-53.
Tymchyshyn, M. & Xu, C. 2010.
Liquefaction of bio-mass in hot-compresed water for the production of phenolic
compounds. Bioresource Technology 101: 2483-2490.
Wahyudiono., Sasaki, M. &
Goto, M. 2008. Recovery of phenolic compounds through the decomposition of
lignin in near and supercritical water. Chemical Engineering and Processing 47:
1609-1619.
Wang, M., Xu, C. & Leitch, M.
2008. Liquefaction of cornstalk in hot compressed phenol-water medium to
phenolic feedstock for the synthesis of phenol-formaldehyde resin. Bioresource
Technology 100: 2305-2307.
Wang, M., Leitch, M. & Xu, C.
2009a. Synthesis of phenol-formaldehyde resol resins using organosolv pine
lignins. European Polymer Journal 45: 3380-3388.
Wang, M., Leitch, M. & Xu, C.
2009b. Synthesis of phenolic resol resins using cornstalk-derived bio-oil
produced by direct liquefaction in hot-compressed phenol-water. Journal of
Industrial and Engineering Chemistry 15: 870-875.
Zhang, Y., Ikeda, A., Hori, N.,
Takemura, A., Ono, H. & Yamada, T. 2006. Characterization of liquefied
product from cellulose with phenol in the presence of sulfuric acid. Bioresource
Technology 97: 313-321.
*Corresponding
author; email: sarani@ukm.my
|