Sains
Malaysiana 41(6)(2012): 731–738
D-Optimal Design Optimization of Jatropha
curcas L. Seed OilHydrolysis via
Alkali-Catalyzed Reactions
(Pengoptimuman
Reka Bentuk D-Optimum Hidrolisis Minyak Biji Jatropha curcas L.
Melalui
Tindak Balas Mangkin Alkali)
Jumat Salimon*, B Asharmudhaffar Abdullah & Nadia Salih
School of Chemical Sciences and Food Technology, Faculty of
Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 11 October 2010 / Accepted: 20 January 2012
ABSTRACT
Potassium hydroxide (KOH)-catalyzed
reactions were utilized to hydrolyze Jatropha curcas seed
oil. In this study, the effect of ethanolic KOH concentration,
reaction temperature and reaction time to the free fatty acid (FFA)
produced were investigated. D-Optimal Design was employed to study the
significance of these factors and optimum conditions for the technique was
predicted. The results showed that ethanolic KOH concentration
was a significant variable for hydrolysis of J. curcas seed oil.
In 18 experimental designs, FFA percentage
of hydrolyzed J. curcas seed oil increased from 1.89% to
102.2%. The optimal conditions of response were found at 1.75M of ethanolic KOH, 65
°C and at 2 h reaction time. Fourier Transforms Infrared Spectroscopy (FTIR)
spectrum analysis confirmed the concentration of ethanolic KOH i.e.
at 1.00, 1.50 dan 1.75 M affect the percentage yields of J. curcas seed oil hydrolysis process.
Keywords: Alkaline
hydrolysis; D-optimal design; Jatropha curcas seed
oil
ABSTRAK
Tindak balas bermangkin
kalium hidroksida (KOH) telah digunakan untuk
hidrolisis minyak biji Jatropha curcas. Kesan
nisbah kepekatan KOH beretanol,
suhu dan masa tindak balas terhadap penghasilan asid lemak bebas (ALB) telah dikaji. Reka bentuk D-Optimum telah digunakan untuk menentukan keberkesanan
parameter tindak balas dan nilai optimumnya diramalankan serta ditentukan. Keputusan kajian menunjukkan bahwa kepekatan KOH beretanol
merupakan parameter yang bererti bagi hidrolisis minyak J. curcas.
Reka bentuk 18 uji kaji menunjukkan peratus ALB hasil
hidrolisis minyak J. curcas telah ditingkatkan daripada 1.89%
kepada 102.2%. Keadaan gerak balas optimum telah dicerap pada 1.75 M KOH beretanol,
suhu 65°C dan 2 jam masa tindak balas. Analisis Spektroskopi Inframerah Fourier
Transform (FTIR) telah membuktikan
bahwa pertambahan kepekatan KOH beretanol
pada 1.00, 1.50 dan 1.75 M meningkatkan peratusan hasil proses hidrolisis
minyak biji J. curcas.
Kata kunci: Hidrolisis
beralkali; minyak biji; reka bentuk D-optimal; Jatropha
curcas
REFERENCES
Ackelsberg,
O.J. 1958. Fat splitting. Journal of the American Oil Chemists’ Society 35:
635-640.
Bashar,
M.A. & Jumat, S. 2009. Physicochemical characteristics of Malaysian rubber (Hevea
Brasiliensis) seed oil. European Journal of Scientific Research 31:
437-445.
Carvalho,
P.D.O., Campos, P.R.B., Noffs, M.D., Fregolente, P.B.L. & Fregolente, L.V.
2009. Enzymatic hydrolysis of salmon oil by native lipases: optimization of
process parameters. Journal of the Brazilian Chemical Society20:
117-124.
Fadiloğlu,
S. & Söylemez, Z. 1998. Olive oil hydrolysis by
celite-immobilized Candida rugosa lipase. Journal of
Agricultural and Food Chemistry 46: 3411-3414.
Hermansyah,
H.K., Shibasaki-Kitakawa, N. M. & Yonemoto, T. 2006. Mathematical model for stepwise hydrolysis of triolein using Candida
rugosa lipase in biphasic oil-water system. Biochemical
Engineering Journal 31: 125-132.
Jumat, S., Mamot, S.,
Suria, R. and Mohamad Azwani, M.L. 2006. Oils and Fats Analysis. Bangi: Penerbit UKM.
Jumat, S. & Rozaini, A. 2008. Physicochemical properties of Malaysian Jatropha curcas seed
oil. Sains Malaysiana37: 379-382.
Mason, R.L. Gunst, R.F., Hess, J.L. 1989. Statistical
Design and Analysis of Experiments with Applications to Engineering and Science.
New York: Wiley.
Noor, I.M., Hasan, M. & Ramachandran, K.B. 2003. Effect of operating variable on the hydrolysis rate of palm oil by
lipase. Process Biochemistry 39: 13-20.
Pinto, J.S. & Lanças, F.M. 2006. Hydrolysis
of corn oil using subcritical water. Journal
of the Brazilian Chemical Society 17: 85-89.
Rooney, D. & Weatherly, L.R. 2001. The effect of reaction
conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a
stirred liquid-liquid reactor. Process Biochemistry 36: 947-953.
Senanayake, J.N. & Shahidi, F. 1999. Enzymatic incorporation of docosahexaenoic
acid into borage oil. Journal of the American Oil Chemists’ Society 76:
1009-1015.
Serri, N.A., Kamarudin, A.H. & Abdul Rahaman, S.N. 2008. Preliminary studies for production of fatty acids from hydrolysis
of cooking palm oil using C. rugosa lipase. Journal of
Physical Science 19: 79-88.
Socrates, G. 2001. Infrared and Raman Characteristic Group
Frequencies: Tables and Charts. (3rd ed). Chichester, England:
John Wily & Sons Ltd.
Syed Rahmatullah, M.S.K., Shukla, V.K. & Mukherjee, K.D.
1994. γ-Linolenic acid
concentrates from borage and evening primrose oil fatty acids via
Lipase-Catalyzed Esterification. Journal of the American Oil Chemists’
Society 71: 563-567.
Wu, M. D., Wang, H.S. & Xu, S.H. 2008. Optimization
conditions for the purification of linoleic acid from sunflower oil by urea
complex fractionation. Journal of the American Oil Chemists’ Society 85:
677-684.
Yang, K. & El-Haik, B.S. 2009. Design for Six Sigma, Roadmap for Product Development. (2nd Ed). New York:
McGraw-Hill Professional.
*Corresponding author; e-mail: jumat@ukm.my
|