Sains Malaysiana 41(6)(2012): 721–729
Changes in Hepatic Phosphoprotein Levels in Mice Infectedwith Plasmodium berghei
(Perubahan Aras Fosfoprotein Hepar dalam Mencit Terinfeksi Plasmodium berghei)
Pramilamaniam, Zainalabidin Abu Hassan, Noor Embi & Hasidah Mohd Sidek*
School of
Biosciences & Biotechnology, Faculty of
Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received:
7 February 2011 /Accepted: 5 January 2012
ABSTRACT
Hepatic phosphoprotein levels are altered in mouse liver as a
manifestation of bacteria, virus or parasite infection. Identification of
signaling pathways mediated by these hepatic proteins contribute to the current
understanding of the mechanism of pathogenesis in malarial infection. The
present study was undertaken to evaluate the changes in hepatic phosphoprotein levels during Plasmodium berghei infection. Our study revealed changes in
levels of three hepatic phosphoproteins following P. berghei infection compared to non-infected
controls. Peptide fragment sequence analysis using tandem mass spectrometry (MS/MS)
showed these hepatic proteins to be homologs to haemoglobin beta (HBB), class Pi glutathione
S-tranferase (GSTPi) and
carbonic anhydrase III (CAIII)
proteins of Mus musculus species respectively from the NCBInr sequence
database. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis predicted the involvement of these proteins in specific
pathways in Mus musculus species; GSTPi in
glutathione and drug metabolism and CAIII in
nitrogen metabolism. This shows that P. berghei infection affects similar signaling pathways as those reported in other
pathogenic infections such as that related to GSTPi and CAIII in
response to oxidative stress.
Keywords: Chloroquine; hepatomegaly; malaria; phosphoprotein; Plasmodium berghei
ABSTRAK
Aras fosfoprotein hepar mencit berubah semasa manifestasi infeksi oleh bakteria, virus dan parasit. Pengenalpastian tapak jalan pengisyaratan yang diperantara oleh protein hepar boleh menyumbang kepada pemahaman terhadap patogenesis infeksi malaria. Kajian ini dilakukan untuk menentukan perubahan aras fosfoprotein hepar semasa infeksiPlasmodium berghei. Dalam kajian ini, perubahan aras tiga fosfoprotein hepar telah diperhatikan sewaktu infeksiP. berghei berbanding kawalan tanpa infeksi. Analisis jujukan fragmen peptida menggunakan spektrometri jisim tandem (MS/MS) menunjukkan protein hepar tersebut terdiri daripada homolog kepada hemoglobin beta (HBB), glutation S-tranferase kelas Pi (GSTPi) dan karbonik anhidrase III (CAIII) daripada spesiesMus musculus masing-masing dari pangkalan data jujukanNCBInr. Analisis tapak jalan menggunakan pangkalan data Kyoto Encyclopedia of
Genes and Genomes (KEGG) meramalkan penglibatanGSTPi dalam metabolisme glutation dan dadah; dan protein CAIII dalam metabolisme nitrogen, kesemuanya dalam spesiesMus musculus. Kajian ini menunjukkan bahawa infeksiP. berghei memberi kesan terhadap tapak jalan pengisyaratan yang telah dilaporkan terlibat dalam infeksi patogen lain umpamanya tapak jalan berkaitanGSTPi dan CAIII sebagai respons terhadap tekanan oksidatif.
Kata kunci: Fosfoprotein; hepatomegali; klorokuin; malaria; Plasmodium berghei
REFERENCES
Adachi, K., Tsutsui, H., Kashiwamura, S.,
Seki, E., Nakano, H., Takeuchi, O., Takeda, K., Okumura, K., Kaer, V.L., Okamura, H., Akira, S. & Nakanishi, K.
2001. Plasmodium bergheiinfection in mice
induces liver injury by an IL-12- and Toll-like receptor/myeloid
differentiation factor 88-dependent mechanism. Journal of Immunology 167:
5928–5934
Alkahtani, S. 2010. Different apoptotic responses to Plasmodium chabaudimalaria in spleen and
liver. African Journal of Biotechnology 9(45): 7611-7616.
Biswas,
D., Niwa, H. & Itoh, K.
2004. Infection with Campylobacter jejuniinduces tyrosine-phosphorylated proteins into
INT-407 cells. Microbiology and Immunology 48(4): 221-228.
Bradford,
M.M. 1976. A rapid and sensitive method for quantitation of
microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry 72: 248-254.
Choi, J.
& Ou, J.H. 2006. Mechanisms of
liver injury III. Oxidative stress in the pathogenesis
of hepatitis C virus. American Journal of Physiology:
Gastrointestinal and Liver Physiology 290: G847–G851.
Coban, C.,
Ishii, K.J., Horii, T. & Akira, S. 2007. Manipulation of host innate immune
responses by the malaria parasite. Trends in Microbiology 15(6):
271-278.
Fowler,
C.B., Chesnick, I.E., Moore, C.D., O’Leary T.J. &
Mason, J.T. 2010. Elevated pressure improves the
extraction and identification of proteins recovered from formalin-fixed,
paraffin-embedded tissue surrogates. PLoS ONE5(12): e14253.
Greenwood,
B.M., Fidock, D.A., Kyle, D.E., Kappe,
S.H.I, Alonso, P.L., Collins, F.H. & Duffy, P.E. 2008. Malaria:
Progress, perils and prospects for eradication. Journal of Clinical
Investigation 118(4): 1266-1276.
Harvie,
M., Jordan, T.W. & Flamme, A.C.L. 2007. Differential liver protein expression during schistosomiasis. Infection and Immunity 75(2): 736-744.
Ishino,
T., Yano, K., Chinzei, Y. & Yuda,
M. 1994. Cell-passage activity is required for the
malarial parasite to cross the liver sinusoidal cell layer. Public Library
of Science Biology 2(1): 77-85.
Kanehisa Laboratories. 1995. KEGG pathway database. http://www.genome.jp/kegg/pathway.html
[1 December 2010].
Kanehisa,
M., Goto, S., Furumichi,
M., Tanabe, M., & Hirakawa, M. 2010. KEGG for
representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38: D355-D360.
Kim, G.,
Lee, T.H., Wetzel, P., Geers, C., Robinson, M.A.,
Myers, T.G., Owens, J.W., Wehr, N.B., Eckhaus, M.W., Gros, G., Boris,
A.W. & Levine, R.L. 2004. Carbonic anhydrase III is not required in the
mouse for normal growth, development, and life span. Molecular and Cellular
Biology 24(22): 9942-9947.
Kochar,
D.K., Agarwal, P., Kochar,
S.K., Jain, R., Rawat, N., Pokharna,
R.K., Kachhawa, S. & Srivastava,
T. 2003. Hepatocyte dysfunction and
hepatic encephalopathy in Plasmodium falciparum malaria. International
Journal of Medicine 96: 505–512.
Krucken,
J., Dkhil, M.A., Braun, J.V., Schroetel,
R.M.U., El-Khadragy, M., Carmeliet,
P., Mossmann, H. & Wunderlich,
F. 2005. Testosterone suppresses protective responses of
the liver to blood-stage malaria. Infection and Immunity 73(1): 436-443.
Kshreerasagar, R.L.
& Kaliwal, B.B. 2006. Histological
and biochemical changes in the liver of albino mice on exposure to insecticide, carbosulfan. The Journal of Environmental
Science and Technology 4(1): 67-70.
Laemmli, U.K.
1970. Cleavage of structural proteins during the assembly of
the head of bacteriophage T4. Nature227: 680-685.
Lee, C.
2007. Protein extraction in mammalian tissues. Methods
in Molecular Biology 362: 385-389.
Lo, H.W., Antoun, G.R. & Osman, F.A. 2004. The human
glutathione S-transferase P1 protein is
phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent
protein kinase and protein kinase C, in glioblastoma cells. Cancer Research 64: 9131-9138.
Mao,
X., Cai, T., Olyarchuk,
J.G. & Wei, L. 2005. Automated genome
annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19): 3787-3793.
Marlovits, S., Hombauer, M., Truppe, M., Vècsei, V. & Schlegel, W. 2004. Changes
in the ratio of type-I and type-II collagen expression during monolayer culture
of human chondrocytes. The Journal of Bone and
Joint Surgery 86B(2): 286-295.
Nelson,
M.M., Jones, A.R., Carmen, J.C., Sinai, A.P., Burchmore,
R. & Wastling, J.M. 2008. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infection and Immunity 76(2):828-844.
Nobes,
M.H., Ghabrial, H., Simms, K.M., Smallwood, R.B.,
Morgan, D.J. & Sewell, R.B. 2002. Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. Gastroenterology and Hepatology17: 598-605.
Okamura,
T., Singh, S., Buolamwini, J., Haystead,
T. & Friedman, H. 2009. Tyrosine
phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. Journal of Biological
Chemistry 284 (5): 16979-16989.
Orjih, A.U.
1997. Heme polymerase activity and the stage specificity of antimalarial action of chloroquine. The Journal of Pharmacology and
Experimental Therapeutics 282: 108–112.
Paranawithana,
S.R., Tu, C.K., Laipis,
P.J. & Silverman, D.N. 1990. Enhancement
of the catalytic activity of carbonic anhydrase III. Journal of
Biological Chemistry 265(36): 22270-22274.
Patel,
S.P., Katewa, S.D. & Katyare,
S.S. 2005. Effect of antimalarials treatment on rat
liver lysosomal function- an in vivo study. Indian
Journal of Clinical Biochemistry 20(1): 1-8.
Peters,
W., Portus, J.H. & Robinson, B.L. 1975. The chemotherapy of rodent malaria. XXII. The value of
drug-resistant strains of P. bergheiin
screening for blood schizonticidal activity. Annals
of Tropical Medicine and Parasitology 69:155–171.
Prudêncio,
M., Rodriguez, A. & Mota, M.M. 2006. The
silent path to thousands of merozoites: the Plasmodium liver stage. Nature Reviews Microbiology 4: 849-856.
Rahman, I.
& MacNee, W. 2000. Regulation of redox
glutathione levels and gene transcription in lung inflammation: therapeutic
approaches. Free Radical Biology and Medicine 28(9): 1405-1420.
Saito,
S., Shinomiya, H. & Nakano, M. 1994. Protein
phosphorylation in murine peritoneal macrophages induced by infection with
Salmonella species. Infection and Immunity 62(5): 1551-1556.
Sand, C., Hortsmann, S., Schmidt, A., Sturn,
A., Bolte, S., Krueger, A., Lutgehetmann,
M., Pollok, J.M., Libert, C. & Heussler, V.T. 2005. The liver stage of Plasmodium bergheiinhibits
host cell apoptosis. Molecular Microbiology58(3): 731-742.
Sein, K.K. & Aikawa, M. 1998. The pivotal role of carbonic anhydrase in
malaria infection. Medical Hypotheses50: 19-23.
Sharrock,
W.W., Suwanarusk, R., Lek-Uthai,
U., Edstein, M.D., Kosaisavee,
V., Travers, T., Jaidee, A., Sriprawat,
K., Price, R.N., Nosten, F. & Russel,
B. 2008. Plasmodium vivaxtrophozoites insensitive to chloroquine. Malaria Journal 7: 94-99.
Sherman,
I.W. 2008. Reflections on a century of malaria biochemistry: In vivo and in
vitro models. Advances in Parasitology 67: 25-47.
Shi,
Y., Sun, S., Liu, Y., Li, J., Zhang, T., Wu, H., Chen, X., Chen, D. & Zhou,
Y. 2010. Keratin 18 phosphorylation as a progression
marker of chronic hepatitis B. Virology Journal 7:70.
Sohail,
M., Kumar, R., Kaul, A., Arif,
E., Kumar, S. & Adak, T. 2010. Polymorphism in
glutathione S-transferase P1 is associated
with susceptibility to Plasmodium vivaxmalaria
compared to P. falciparum and upregulates the
GST level during malarial infection. Free Radical Biology and Medicine 49(11):
1746-1754.
Thomas,
J., Tanja, P., Iris, G. & Bernhard, F. 2004. CTLA-4-dependent mechanisms prevent T cell induced-liver pathology during the
erythrocyte stage of Plasmodium bergheimalaria. European Journal of Immunology34: 972-980.
Towbin, H., Staehelin, T. & Gordon, J. 1979. Electrophoretic
transfer of proteins from polyacrylamide gels to nitrocellulose sheets:
procedure and some applications. Proceedings of the National Academy of
Sciences USA 76(9): 4350-4354.
Viboud, G.I.
& Bliska, J.B. 2005. Sex determination and sex
differentiation in malaria parasites. Annual Review of Microbiology 59:
69-89.
Wu, Y.,
Nelson, M., Quaile, A., Xia, D., Wastling,
J. & Craig, A. 2009. Identification of
phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium
falciparum. Malaria Journal 8 (1):105.
Wilairatana,
P., Tangpuckdee, N., Krudsood,
S., Pongponratn, E. & Riganti,
M. 2008. Gastrointestinal and liver
involvement in falciparum malaria. Journal of Gastroenterology9(3): 124-127.
Zhang,
D.H., Tai, L.K., Wong, L.L., Sethi, S.K. & Koay, E.S.C. 2005. Proteomic study reveals
that proteins involved in metabolic and detoxification pathways are highly
expressed in HER-2/neu-positive breast cancer. Molecular and Cellular Proteomics 4: 1686-1696.
*Corresponding author;
email: hasidah@ukm.my
|