Sains Malaysiana 41(6)(2012): 747–754

 

Evaluation of Dry Deposition Velocity of SO2 by Bowen Ratio and Resistance

Model Over Rice Paddy in Tropical Climate

(Pengukuran Halaju Pemendapan Kering SO2 Menggunakan Model Nisbah Bowendan

Rintangan di Kawasan Penanaman Padi Beriklim Tropika)

 

Orachorn Chimjan* & Pojanee Khummongkol

Environmental Technology Division, School of Energy, Environment and Materials

King Mongkut’s University of Technology Thonburi, 126 Pracha-U-Thit Rd., Bangmod, Thungkru

Bangkok 10140, Thailand

 

Received: 13 October 2011 / Accepted: 4 January 2012

 

 

ABSTRACT

The Bowen ratio method was applied to determine dry deposition velocity of SO2 over rice paddy in the tropical climate condition (hot and humid). The meteorological parameters and SO2 concentration required by the method were monitored online during July – December 2007. The deposition velocity was evaluated under the wet and dry climatic conditions. The median values of the velocity in daytime in the wet season were in ranges of 0.24 - 0.41 cm s-1, and 0.42 - 0.77 cm s-1 in the dry season. The SO2 dry deposition velocity was found to be very low for all the nighttime measurements and independent of seasonal variation. A relationship between the deposition velocity and the humidity was seen in which the SO2 velocity inversely increased with the relative humidity. The velocity determined by the Bowen ratio study was compared to Wesely resistance model. The comparative study showed that the SO2 deposition velocity obtained by the resistance model was higher than the Bowen ratio in the wet season (high humidity) but lower in the dry season (low humidity). This indicated the effect of humidity on the deposition velocity under the tropical climatology. The parameterization terms to calculate the SO2 deposition in the resistance model need to be modified for the tropical region.

 

Keywords: Bower Ratio method; dry deposition of SO2; resistance model; tropical region

 

 

ABSTRAK

Kaedah Nisbah Bowen telah digunakan untuk menentukan halaju pemendapan kering SO2 di kawasan penanaman padi beriklim tropika (panas dan lembab). Parameter meteorologi dan SO2 yang diperlukan bagi kaedah ini telah diukur secara berterusan dari bulan Julai hingga Disember 2007. Penentuan halaju pemendapan telah ditentukan dalam keadaan iklim basah dan kering. Nilai median halaju di siang hari pada musim hujan adalah dalam julat 0.24 - 0.41 cm s-1, dan 0.42 - 0.77 cm s-1 pada musim kering. Halju pemendapan kering SO2 didapati sangat rendah untuk semua ukuran pada waktu malam dan ianya tidak bergantung kepada variasi musim. Hubungan antara halaju pemendapan dan dan kelembapan dapat diperhatikan di mana halaju pemendapan SO2 adalah berkadar songsang dengan kelembapan relatif. Halaju pemendapan Bowen juga telah dibandingkan dengan Model Rintangan Wesely. Kajian perbandingan menunjukkan halaju pemendapan SO2yang diperoleh daripada model rintangan adalah lebih tinggi berbanding nisbah Bowen pada musim hujan (kelembapan tinggi) tetapi lebih rendah pada musim kering (kelembapan rendah). Ini menunjukkan kesan kelembapan kepada halaju di kawasan beriklim tropika. Terma penggunaan parameter bagi pengiraan pemendapan SO2 dalam model rintangan harus di ubahsuai bagi penggunaan di rantau tropika.

 

Kata kunci: Pemendapan kering SO2; kaedah nisbah Bowen; model rintangan; rantau tropika

REFERENCES

An, J., Ueda, H., Wabz, Z., Matsuda, K., Kaijino, M. & Cheng, X. 2002. Simulations of monthly mean nitrate concentrations in precipitation. Atmospheric Environment 36: 4159-4171.

Buzorius, G., Rannik, U., Makela, J., Keronen, P.M., Vesala, T. & Kulmala, M. 1998. Vertical aerosol fluxes measured by the eddy covariance technique using a condensational particle counter. Journal of Aerosol Science 29: 157-171.

Erisman, J.W. 1994. Evaluation of a surface resistance parameterization of sulphur dioxide. Atmospheric Environment 28: 2583-2594.

Feliciano, M.S., Pio, C.A. & Vermeulen, A.T. 2001. Evaluation of SO2 dry deposition over short vegetation in Protugal. Atmospheric Environment 35: 3633-3643.

Finkelstein, P.L. 2001. Deposition velocities of SO2 and O3 over agricultural and forest ecosystems. Water, Air & Soil Pollution: Focus 1: 49-57.

Fowler, D. & Duyzer, J.H.H. 1989. Micrometeorological techniques for the measurement of trace gas exchange. In edited by Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, M.O. Andrae & D.S. Schimel (eds.) New York: John Wiley and Sons.

Jitto, P., Vinitnantarat, S. & Khummongkol, P. 2007. Dry deposition velocity of sulfur dioxide over rice paddy in the tropical region. Atmospheric Research 85: 140-147.

Lamaud, E., Carrara, A., Erunet, Y., Lopez, A. & Druihet, A. 2002. Ozone fluxes above and within a pine forest canopy in dry and wet conditions. Atmospheric Environment36: 77-88.

Matsuda, K., Aoki, M.M. & Zhang, S. D. 2001. Dry deposition velocity of sulfur dioxides on a red pine forest in Nagano Japan. Journal of Japan Society for Atmospheric Environment 37: 387-392.

Matsuda, K., Sakurai, T., Fujita, S. & Totsuka, T. 2004. The influence of Miyakejima volcano on wet and dry deposition of sulfer in Japan. Journal of Japan Society for Atmospheric Environment 39: 148-157.

Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P. & Ohizumi, T. 2006. Deposition velocity of O3 and SO2 in the dry and wet season above a tropical forest in northern Thailand. Atmospheric Environment 40: 7557-7564.

Mayers, T.P. & Baldocchi, D.D. 1988. A comparison of models for deriving dry deposition fluxes of O3 and SO2 to a forest canopy. Tellus 40B: 270-284.

Monteith, J.L. & Unsworth, M. 1990. Principles of Environmental Physics, 2nd ed. London: Butterworth-Heinemann.

Saueprasearsit, P. & Khummongkol, P. 2009. Evaluation of SO2 dry deposition over a cassava plantation in Rayong, Thailand. International Journal of Environment and Pollution 36: 255-261.

Sorimachi, A., Sakamoto, K., Ishihara, H., Fukuyama, T., Utiyama, M., Liu, H., Wang, W., Tang, D., Dong, X. & Quan, H. 2003. Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China- a preliminary study. Atmospheric Environment31: 3157-3166.

Uno, I., Jang, E.S., Shimohara, T., Oishi, O., Utsumoniya, A., Hatakeyama, S., Murano, K., Tang, X. & Kim, Y.P. 2000. Winter time intermittent transboundary air pollution over East Asia simulated by a long-rang transport model. Global Environmental Research 4: 3-12.

Utiyama, M., Fukuyama, T., Sakamoto, K., Ishihara, H., Sorimachi, A., Tanonaka, T., Dong X., Quan, H., Wang, W. & Tang, D. 2005. Sulfur dioxide dry deposition on the loss surface-surface reaction concept for measuring dry deposition flux. Atmospheric Environment 39: 329-335.

Wesely, M.L. 1989. Parameterization of surface resistance to gaseous dry deposition in regional scale numerical model. Atmospheric Environment 23: 1293-1304.

Wesely, M.L. & Hicks, B.B. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 32: 2261-2282.

Zhang, L., Brook, J.R. & Vet, R. 2003a. A revised parameterization for gaseous dry deposition in air-quality models. Atmospheric Chemistry and Physics 3: 2067-2082.

Zhang, L., Brook, J.R. & Vet, R. 2003b. Evaluation of a non-stomata resistance parameterization for SO2 dry deposition. Atmospheric Environment 37: 2941-2947.

 

 

*Corresponding author; email: aorsung@hotmail.com

 

 

 

previous