Sains Malaysiana 41(6)(2012): 747–754
Evaluation of Dry Deposition Velocity of SO2 by Bowen Ratio and Resistance
Model Over Rice Paddy in Tropical Climate
(Pengukuran Halaju Pemendapan Kering SO2 Menggunakan Model Nisbah Bowendan
Rintangan di Kawasan Penanaman Padi Beriklim Tropika)
Orachorn Chimjan* & Pojanee Khummongkol
Environmental
Technology Division, School
of Energy, Environment and Materials
King Mongkut’s University of Technology Thonburi, 126 Pracha-U-Thit Rd., Bangmod, Thungkru
Bangkok
10140, Thailand
Received: 13 October 2011 / Accepted: 4 January 2012
ABSTRACT
The Bowen ratio method was applied to
determine dry deposition velocity of SO2 over rice
paddy in the tropical climate condition (hot and humid). The meteorological parameters
and SO2 concentration required
by the method were monitored online during July – December 2007. The
deposition velocity was evaluated under the wet and dry climatic conditions.
The median values of the velocity in daytime in the wet season were in ranges
of 0.24 - 0.41 cm s-1, and 0.42 - 0.77 cm s-1 in the
dry season. The SO2 dry
deposition velocity was found to be very low for all the nighttime measurements
and independent of seasonal variation. A relationship between the deposition
velocity and the humidity was seen in which the SO2 velocity
inversely increased with the relative humidity. The velocity determined by the
Bowen ratio study was compared to Wesely resistance
model. The comparative study showed that the SO2 deposition
velocity obtained by the resistance model was higher than the Bowen ratio in
the wet season (high humidity) but lower in the dry season (low humidity). This
indicated the effect of humidity on the deposition velocity under the tropical
climatology. The parameterization terms to calculate the SO2 deposition
in the resistance model need to be modified for the tropical region.
Keywords: Bower Ratio method; dry
deposition of SO2; resistance model;
tropical region
ABSTRAK
Kaedah Nisbah Bowen telah digunakan untuk menentukan halaju pemendapan kering SO2 di kawasan penanaman padi beriklim tropika (panas dan lembab). Parameter meteorologi dan SO2 yang diperlukan bagi kaedah ini telah diukur secara berterusan dari bulan Julai hingga Disember 2007. Penentuan halaju pemendapan telah ditentukan dalam keadaan iklim basah dan kering. Nilai median halaju di siang hari pada musim hujan adalah dalam julat 0.24 - 0.41 cm s-1, dan 0.42 - 0.77 cm s-1 pada musim kering. Halju pemendapan kering SO2 didapati sangat rendah untuk semua ukuran pada waktu malam dan ianya tidak bergantung kepada variasi musim. Hubungan antara halaju pemendapan dan dan kelembapan dapat diperhatikan di mana halaju pemendapan SO2 adalah berkadar songsang dengan kelembapan relatif. Halaju pemendapan Bowen juga telah dibandingkan dengan Model Rintangan Wesely. Kajian perbandingan menunjukkan halaju pemendapan SO2yang diperoleh daripada model rintangan adalah lebih tinggi berbanding nisbah Bowen pada musim hujan (kelembapan tinggi) tetapi lebih rendah pada musim kering (kelembapan rendah). Ini menunjukkan kesan kelembapan kepada halaju di kawasan beriklim tropika. Terma penggunaan parameter bagi pengiraan pemendapan SO2 dalam model rintangan harus di ubahsuai bagi penggunaan di rantau tropika.
Kata kunci: Pemendapan kering SO2; kaedah nisbah Bowen; model rintangan; rantau tropika
REFERENCES
An, J.,
Ueda, H., Wabz, Z., Matsuda, K., Kaijino,
M. & Cheng, X. 2002. Simulations of monthly mean nitrate
concentrations in precipitation. Atmospheric Environment 36:
4159-4171.
Buzorius, G., Rannik, U., Makela, J., Keronen, P.M., Vesala, T. & Kulmala, M. 1998. Vertical aerosol fluxes measured by the eddy covariance technique using a condensational particle
counter. Journal of Aerosol Science 29: 157-171.
Erisman, J.W.
1994. Evaluation of a surface resistance parameterization of sulphur dioxide. Atmospheric Environment 28:
2583-2594.
Feliciano, M.S., Pio, C.A. & Vermeulen, A.T. 2001. Evaluation of SO2 dry deposition over short vegetation in Protugal. Atmospheric
Environment 35: 3633-3643.
Finkelstein, P.L. 2001. Deposition
velocities of SO2 and O3 over
agricultural and forest ecosystems. Water, Air & Soil Pollution: Focus 1: 49-57.
Fowler, D. & Duyzer, J.H.H.
1989. Micrometeorological techniques
for the measurement of trace gas exchange. In edited by Exchange of Trace
Gases Between Terrestrial Ecosystems and the Atmosphere, M.O. Andrae & D.S. Schimel (eds.)
New York: John Wiley and Sons.
Jitto, P., Vinitnantarat, S. & Khummongkol,
P. 2007. Dry deposition velocity of sulfur dioxide over rice paddy in the
tropical region. Atmospheric Research 85: 140-147.
Lamaud, E., Carrara, A., Erunet, Y., Lopez, A. & Druihet,
A. 2002. Ozone fluxes above and within
a pine forest canopy in dry and wet conditions. Atmospheric Environment36:
77-88.
Matsuda, K., Aoki, M.M. & Zhang, S. D. 2001. Dry
deposition velocity of sulfur dioxides on a red pine forest in Nagano Japan. Journal
of Japan Society for Atmospheric Environment 37: 387-392.
Matsuda, K., Sakurai, T., Fujita, S. & Totsuka, T. 2004. The influence of Miyakejima volcano on wet and dry deposition of sulfer in Japan. Journal of Japan Society for Atmospheric Environment 39: 148-157.
Matsuda, K., Watanabe, I., Wingpud,
V., Theramongkol, P. & Ohizumi,
T. 2006. Deposition velocity of O3 and SO2 in the dry and wet season above a tropical forest in northern
Thailand. Atmospheric Environment 40: 7557-7564.
Mayers, T.P.
& Baldocchi, D.D. 1988. A comparison of models
for deriving dry deposition fluxes of O3 and SO2 to a forest canopy. Tellus 40B: 270-284.
Monteith, J.L. & Unsworth, M. 1990. Principles of Environmental Physics, 2nd ed. London: Butterworth-Heinemann.
Saueprasearsit, P.
& Khummongkol, P. 2009. Evaluation
of SO2 dry deposition over a cassava plantation in Rayong,
Thailand. International Journal of Environment and Pollution 36:
255-261.
Sorimachi, A., Sakamoto, K., Ishihara, H., Fukuyama, T., Utiyama, M., Liu, H., Wang, W., Tang, D., Dong, X. & Quan, H. 2003. Measurements of sulfur dioxide and ozone dry deposition over short vegetation
in northern China- a preliminary study. Atmospheric Environment31:
3157-3166.
Uno, I., Jang, E.S., Shimohara, T., Oishi, O., Utsumoniya, A., Hatakeyama, S., Murano, K., Tang,
X. & Kim, Y.P. 2000. Winter time intermittent transboundary air pollution over East Asia simulated by a long-rang transport model. Global
Environmental Research 4: 3-12.
Utiyama, M., Fukuyama, T., Sakamoto, K., Ishihara, H., Sorimachi, A., Tanonaka, T., Dong
X., Quan, H., Wang, W. & Tang, D. 2005. Sulfur dioxide dry deposition on
the loss surface-surface reaction concept for measuring dry deposition flux. Atmospheric
Environment 39: 329-335.
Wesely, M.L.
1989. Parameterization of surface resistance to gaseous dry
deposition in regional scale numerical model. Atmospheric Environment 23: 1293-1304.
Wesely, M.L.
& Hicks, B.B. 2000. A review of the current status of
knowledge on dry deposition. Atmospheric Environment 32:
2261-2282.
Zhang, L., Brook, J.R. & Vet, R. 2003a. A revised parameterization for gaseous dry
deposition in air-quality models. Atmospheric Chemistry and Physics 3:
2067-2082.
Zhang, L., Brook, J.R. & Vet, R. 2003b. Evaluation of a non-stomata resistance
parameterization for SO2 dry deposition. Atmospheric Environment 37: 2941-2947.
*Corresponding author; email: aorsung@hotmail.com
|