Sains Malaysiana 41(8)(2012): 1011–1016

 

 

Natural Dye-Sensitized Solar Cell Based on Nanocrystalline TiO2

(Sel Suria Terpeka Pewarna Semula Jadi Berasaskan Nanohablur TiO2)


K
halil Ebrahim Jasim*

Department of Physics, College of Science, University of Bahrain

Po Box 32038, Kingdom of Bahrain

 

Received: 25 January 2010 / Accepted: 7 June 2011

 

ABSTRACT

During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nanostructured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (Lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (Rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated photovoltaics (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails.

 

Keywords: Building-integrated photovoltaics (BIPV); nanocrystalline layer; natural dye sensitize solar cell NDSSC; photoelectrochemical cell

ABSTRAK

Sejak suku abad yang lalu, aktiviti penyelidikan bagi mencari sumber tenaga hijau sangat giat dilakukan. Matlamat utama penjana atau penukar tenaga adalah untuk menukar sumber tenaga konvensional (fosil) dan mengurangkan pengumpulan gas rumah hijau (GHGs). Sel suria konvensional berasaskan bahan pukal hablur, telaga kuantum dan struktur bintik kuantum atau amorfus dan filem nipis daripada bahan silikon dan semikonduktor III-V menawarkan kemungkinan penyelesaian. Walau bagaimanapun, sel suria terpeka pewarna semula jadi (NDSSC) merupakan kumpulan sel fotovoltan dengan keupayaan penjanaan tenaga hijau pada kos yang lebih rendah disebabkan tiada sistem vakum atau kelengkapan mahal diperlukan untuk penghasilannya. Selain itu, sumber pewarna semula jadi sangat banyak dan ia adalah bahan yang selamat. Di dalam NDSSC, apabila molekul pewarna terdedah kepada cahaya, ia akan teroksida dan memindahkan elektron ke lapisan nanostruktur yang mempunyai jurang tenaga yang lebar seperti TiO2, melalui sentuhan ohmik elektron yang terhasil dikeluarkan dari sel dan terus ke beban. Dalam kajian ini, kami mengkaji struktur dan prinsip operasi sebuah sel suria terpeka pewarna DSSC. Kami membincangkan prosidur penyediaan, pencirian optik dan elektrik sebuah NDSSC menggunakan pewarna tempatan yang diekstrak daripada inai (Lawsonia inermis L.), pomegranat, ceri and rasberi Bahrain (Rubus spp.). Pewarna semula jadi ini merupakan calon yang berpotensi untuk menggantikan sebahagian pewarna buatan manusia yang digunakan sebagai pemeka di dalam sel fotoelektrokimia komersial. Faktor pengehad operasi DSSC juga dibincangkan. NDDSC dijangka menjadi pilihan yang diminati untuk bangunan-terkamir fotovoltan (BIPV) disebabkan kelasakkannya, justeru ia tidak memerlukan perlindungan khusus daripada fenomena semula jadi seperti pukulan pokok dan hujan batu.

 

Kata kunci: Bangunan-terkamir fotovoltan; lapisan nanohablur; sel fotoelektrokimia; sel suria terpeka pewarna semulajadi

REFERENCES

 

Amao, Y. & Komori, T. 2004. Bio-photovoltaic conversion device using chlorine-E6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosensors Bioelectronics 19(8): 843-847.

Cherepy, N.J., Smestad, G.P., Gratzel, M., Zhang J.Z. 1997. Ultrafast electron injection: Implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B 101: 9342-9351.

Garcia, C.G., Polo, A.S. & Iha, N.Y. 2003. Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J. Photochem. Photbiol. A (Chem.) 160(1-2): 87-91.

Hao, S., Wu, J., Huang, Y. & Lin J. 2006. Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80(2): 209-214.

Hara, K. & Arakawa, H. 2003. Dye-sensitized solar cells, in Handbook of Photovoltaic Science And Engineering, A. Luque and S. Hegedus. (ed.): Chapter 15, pp. 663-700. NY: John Wiley & Sons Ltd.

Hasselmann, G. & Meyer, G. 1999. Sensitization of nanocrystalline tio2 by re(i) polypyridyl compounds. J. Phys. Chem. 212: 39-44.

Islam, A., Hara, K., Singh, L.P., Katoh, R., Yanagida, M., Murata, S., Takahashi, Y., Sugihara, H. & Arakawa, H. 2000. Dual electron injection from charge-transfer excited states of TiO2-Anchored Ru(Ii)-4,4′-Dicarboxy-2,2′-Biquinoline Complex. Chem. Lett. 29: 490-491.

Jasim, K.E. & Hassan, A.M. 2009. Nanocrystalline TiO2 based natural dye sensitised solar cells. Int. J. Nanomanufacturing 4: 242–247.

Jasim, K.E., Al-Dallal, S. & Hassan, A.M. 2011. Natural dye-sensitised photovoltaic cells based on nanoporous TiO2. Int. J. Nanoparticles. In Press.

Kalyanasundaram, K. & Gratzel, M. 1998. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chem. Rev. 77: 347-414.

Kopidakis, N., Benkstien, K.D., Van De Lagemaat, J. & Frank, A.J. 2003. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 107: 11307.

Kruger, J., Plass, R., M. Gratzel, M., Cameron, P.J. & Peter, L.M. 2003. Charge transport and back reaction in solid-state dye-sensitized solar cells: Astudy using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107: 7536.

Kumara, G.R.A., Kanebo, S., Okuya, M., Onwaona-Agyeman, B., Konno, A. & Tennakone, K. 2006. Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90: 1220-1226.

Law, M., Greene, L.E., Johnson, J.C., Saykally, R. & Yang, P. D. 2005. Nanowire dye-sensitized solar cells. Nature Materials 4: 455-459.

Matsumoto, M., Wada, Y., T. Kitamura, T., Shigaki, K., Inoue, T., Ikeda, M. & Yanagida, S., Bull. 2001. Fabrication of solid-state dye-sensitized TiO2 solar cell using polymer electrolyte. Chem. Soc. Japan 74: 387-393.

Nazerruddin, M.K, Kay, A., Ridicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N. & Gratzel, M. 1993. Conversion of light to electricity by cis-x2 bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (x = cl-, br-, i-, cn-, and scn-) on nanocrystalline titanium dioxide electrodes. J. Amer. Chem. Soc. 115: 6382-6390.

Noack, V., Weller, H. & Eychmuller, A. 2002. Electron transport in particulate ZnO electrodes: Asimple approach. J. Phys. Chem. B 106: 8514-8523.

O’regan B, & Gratzel, M. 1991. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737-739.

Polo, A.S. & Iha, N.Y. 2006. Blue sensitizers for solar cells: natural dyes from calafate and jaboticaba. Sol. Enrgy Mater. Sol. Cells 90: 1936-1944.

Smestad, G.P. 1998. Education and solar conversion: demonstrating electron transfer. Sol. Energy Mater. Sol. Cells 55: 157-178.

Stathatos, E., Lianos, P., A.S. Vuk, A.S. & B. Orel, B. 2004. Optimization of a quasi-solid-state dye-sensitized photoelectrochemical solar cell employing a ureasil/ sulfolane gel electrolyte. Adv. Funct. Mater. 14: 45-48.

Tennakone, K., Kumara, G., Kottegota, I. & Wijayantha, K. 1997. The photostability of dye-sensitized solid state photovoltaic cells: factors determining the stability of the pigment in a nanoporous n-/cyanidin/p-cui cel. Semicond. Sci. Technol. 12: 128-132.

Tennakone, K., Perera, V.P.S., Kottegoda, I.R.M. & Kumara, G. 1999. Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (iv) oxide films. J. Phys. D - Applied Phys. 32(4): 372-379.

Xiang, J.H., Zhu, P.X., Masuda, Y., Okuya, M., Kaneko, S. & Koumoto, K. 2006. Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in-situ electrodeposition process, J. Nanosci. Nanotechnol. 6: 1797-1801.

Yanagida, S. 2006. Recent research progress of dye-sensitized solar cells in Japan. C.R. Chemie 9: 597-604.

Yanagida, S., Senadeera, G.K.R., Nakamura, K., Kitamura, T. & Wada, Y. 2004. Polythiophene-sensitized TiO2 solar cells. J. Photohem. Photbiol. A 166: 75-80.

Yang, M., Thompson, D. & Meyer, G. 2000. Dual sensitization pathways of TiO2 by Na2[Fe(Bpy)(Cn)4]. Inorg. Chem. 39: 3738-3739.

 

 

*Corresponding author; email: khalilej@gmail.com

 

 

previous
next