Sains
Malaysiana 41(8)(2012): 1011–1016
Natural
Dye-Sensitized Solar Cell Based on Nanocrystalline TiO2
(Sel Suria Terpeka Pewarna Semula Jadi Berasaskan Nanohablur
TiO2)
Khalil Ebrahim Jasim*
Department
of Physics, College of Science, University of Bahrain
Po
Box 32038, Kingdom of Bahrain
Received: 25 January
2010 / Accepted: 7 June 2011
ABSTRACT
During the last quarter of the twentieth century there have
been intensive research activities looking for green sources of energy. The
main aim of the green generators or converters of energy is to replace the
conventional (fossil) energy sources, hence reducing further accumulation of
the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell
based on crystalline bulk, quantum well and quantum dots structure or amorphous
and thin film structures provided a feasible solution. However, natural dye
sensitized solar cells NDSSC are a promising class of photovoltaic cells with the
capability of generating green energy at low production cost since no vacuum
systems or expensive equipment are required in their fabrication. Also, natural
dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules
exposed to light they become oxidized and transfer electrons to a nanostructured
layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside
the cell through ohmic contact to a load. In this paper we review the structure
and operation principles of the dye sensitized solar cell DSSC. We discuss
preparation procedures, optical and electrical characterization of the NDSSC using local dyes
extracted from Henna (Lawsonia inermis L.), pomegranate,
cherries and Bahraini raspberries (Rubus spp.). These natural
organic dyes are potential candidates to replace some of the man-made dyes used
as sensitizer in many commercialized photoelectrochemical cells. Factors
limiting the operation of the DSSC are discussed. NDSSCs are expected to be a
favored choice in the building-integrated photovoltaics (BIPV) due to their
robustness, therefore, requiring no special shielding from natural events such
as tree strikes or hails.
Keywords:
Building-integrated photovoltaics (BIPV); nanocrystalline layer;
natural dye sensitize solar cell NDSSC; photoelectrochemical cell
ABSTRAK
Sejak suku abad yang lalu, aktiviti penyelidikan bagi mencari
sumber tenaga hijau sangat giat dilakukan. Matlamat utama penjana atau penukar
tenaga adalah untuk menukar sumber tenaga konvensional (fosil) dan mengurangkan
pengumpulan gas rumah hijau (GHGs). Sel suria konvensional berasaskan bahan
pukal hablur, telaga kuantum dan struktur bintik kuantum atau amorfus dan filem
nipis daripada bahan silikon dan semikonduktor III-V menawarkan kemungkinan
penyelesaian. Walau bagaimanapun, sel suria terpeka pewarna semula jadi (NDSSC) merupakan kumpulan
sel fotovoltan dengan keupayaan penjanaan tenaga hijau pada kos yang lebih
rendah disebabkan tiada sistem vakum atau kelengkapan mahal diperlukan untuk
penghasilannya. Selain itu, sumber pewarna semula jadi sangat banyak dan ia
adalah bahan yang selamat. Di dalam NDSSC, apabila molekul pewarna terdedah kepada
cahaya, ia akan teroksida dan memindahkan elektron ke lapisan nanostruktur yang
mempunyai jurang tenaga yang lebar seperti TiO2, melalui sentuhan ohmik elektron yang
terhasil dikeluarkan dari sel dan terus ke beban. Dalam kajian ini, kami
mengkaji struktur dan prinsip operasi sebuah sel suria terpeka pewarna DSSC. Kami membincangkan
prosidur penyediaan, pencirian optik dan elektrik sebuah NDSSC menggunakan pewarna
tempatan yang diekstrak daripada inai (Lawsonia inermis L.), pomegranat, ceri
and rasberi Bahrain (Rubus spp.). Pewarna semula jadi ini merupakan
calon yang berpotensi untuk menggantikan sebahagian pewarna buatan manusia yang
digunakan sebagai pemeka di dalam sel fotoelektrokimia komersial. Faktor
pengehad operasi DSSC juga dibincangkan. NDDSC dijangka menjadi pilihan yang diminati
untuk bangunan-terkamir fotovoltan (BIPV) disebabkan kelasakkannya, justeru ia
tidak memerlukan perlindungan khusus daripada fenomena semula jadi seperti
pukulan pokok dan hujan batu.
Kata kunci: Bangunan-terkamir fotovoltan; lapisan nanohablur;
sel fotoelektrokimia; sel suria terpeka pewarna semulajadi
REFERENCES
Amao, Y. & Komori,
T. 2004. Bio-photovoltaic conversion device using chlorine-E6 derived from
chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosensors
Bioelectronics 19(8): 843-847.
Cherepy, N.J.,
Smestad, G.P., Gratzel, M., Zhang J.Z. 1997. Ultrafast electron injection:
Implications for a photoelectrochemical cell utilizing an anthocyanin
dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B 101:
9342-9351.
Garcia, C.G., Polo,
A.S. & Iha, N.Y. 2003. Fruit extracts and ruthenium polypyridinic dyes for
sensitization of TiO2 in photoelectrochemical solar cells. J. Photochem.
Photbiol. A (Chem.) 160(1-2): 87-91.
Hao, S., Wu, J.,
Huang, Y. & Lin J. 2006. Natural dyes as photosensitizers for
dye-sensitized solar cell. Sol. Energy 80(2): 209-214.
Hara, K. & Arakawa, H. 2003.
Dye-sensitized solar cells, in Handbook of Photovoltaic Science And
Engineering, A. Luque and S. Hegedus. (ed.): Chapter 15, pp. 663-700. NY:
John Wiley & Sons Ltd.
Hasselmann,
G. & Meyer, G. 1999. Sensitization of nanocrystalline tio2 by re(i) polypyridyl
compounds. J. Phys. Chem. 212: 39-44.
Islam, A., Hara, K.,
Singh, L.P., Katoh, R., Yanagida, M., Murata, S., Takahashi, Y., Sugihara, H.
& Arakawa, H. 2000. Dual electron injection from charge-transfer excited
states of TiO2-Anchored Ru(Ii)-4,4′-Dicarboxy-2,2′-Biquinoline
Complex. Chem. Lett. 29: 490-491.
Jasim, K.E. &
Hassan, A.M. 2009. Nanocrystalline TiO2 based natural dye sensitised solar cells. Int.
J. Nanomanufacturing 4: 242–247.
Jasim, K.E.,
Al-Dallal, S. & Hassan, A.M. 2011. Natural dye-sensitised photovoltaic
cells based on nanoporous TiO2. Int. J. Nanoparticles. In Press.
Kalyanasundaram, K.
& Gratzel, M. 1998. Applications of functionalized transition metal
complexes in photonic and optoelectronic devices. Coordination Chem. Rev.
77: 347-414.
Kopidakis, N.,
Benkstien, K.D., Van De Lagemaat, J. & Frank, A.J. 2003. Transport-limited
recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J.
Phys. Chem. B 107: 11307.
Kruger, J., Plass, R.,
M. Gratzel, M., Cameron, P.J. & Peter, L.M. 2003. Charge transport and back
reaction in solid-state dye-sensitized solar cells: Astudy using
intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys.
Chem. B 107: 7536.
Kumara, G.R.A.,
Kanebo, S., Okuya, M., Onwaona-Agyeman, B., Konno, A. & Tennakone, K. 2006.
Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy
Mater. Sol. Cells 90: 1220-1226.
Law, M., Greene, L.E.,
Johnson, J.C., Saykally, R. & Yang, P. D. 2005. Nanowire dye-sensitized
solar cells. Nature Materials 4: 455-459.
Matsumoto, M., Wada,
Y., T. Kitamura, T., Shigaki, K., Inoue, T., Ikeda, M. & Yanagida, S.,
Bull. 2001. Fabrication of solid-state dye-sensitized TiO2 solar cell using
polymer electrolyte. Chem. Soc. Japan 74: 387-393.
Nazerruddin, M.K, Kay,
A., Ridicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N.
& Gratzel, M. 1993. Conversion of light to electricity by cis-x2 bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(ii)
charge-transfer sensitizers (x = cl-, br-, i-, cn-, and scn-) on
nanocrystalline titanium dioxide electrodes. J. Amer. Chem. Soc. 115:
6382-6390.
Noack, V., Weller, H.
& Eychmuller, A. 2002. Electron transport in particulate ZnO electrodes:
Asimple approach. J. Phys. Chem. B 106: 8514-8523.
O’regan B, &
Gratzel, M. 1991. A low cost, high-efficiency solar cell based on
dye-sensitized colloidal TiO2 films. Nature 353: 737-739.
Polo, A.S. & Iha,
N.Y. 2006. Blue sensitizers for solar cells: natural dyes from calafate and
jaboticaba. Sol. Enrgy Mater. Sol. Cells 90: 1936-1944.
Smestad, G.P. 1998.
Education and solar conversion: demonstrating electron transfer. Sol. Energy
Mater. Sol. Cells 55: 157-178.
Stathatos, E., Lianos,
P., A.S. Vuk, A.S. & B. Orel, B. 2004. Optimization of a quasi-solid-state
dye-sensitized photoelectrochemical solar cell employing a ureasil/ sulfolane
gel electrolyte. Adv. Funct. Mater. 14: 45-48.
Tennakone, K., Kumara,
G., Kottegota, I. & Wijayantha, K. 1997. The photostability of
dye-sensitized solid state photovoltaic cells: factors determining the
stability of the pigment in a nanoporous n-/cyanidin/p-cui cel. Semicond.
Sci. Technol. 12: 128-132.
Tennakone, K., Perera,
V.P.S., Kottegoda, I.R.M. & Kumara, G. 1999. Dye-sensitized solid state
photovoltaic cell based on composite zinc oxide/tin (iv) oxide films. J.
Phys. D - Applied Phys. 32(4): 372-379.
Xiang, J.H., Zhu,
P.X., Masuda, Y., Okuya, M., Kaneko, S. & Koumoto, K. 2006. Flexible solar-cell
from zinc oxide nanocrystalline sheets self-assembled by an in-situ
electrodeposition process, J. Nanosci. Nanotechnol. 6: 1797-1801.
Yanagida, S. 2006.
Recent research progress of dye-sensitized solar cells in Japan. C.R. Chemie 9: 597-604.
Yanagida, S.,
Senadeera, G.K.R., Nakamura, K., Kitamura, T. & Wada, Y. 2004.
Polythiophene-sensitized TiO2 solar cells. J. Photohem. Photbiol. A 166:
75-80.
Yang, M., Thompson, D.
& Meyer, G. 2000. Dual sensitization pathways of TiO2 by Na2[Fe(Bpy)(Cn)4]. Inorg. Chem.
39: 3738-3739.
*Corresponding author; email: khalilej@gmail.com
|