Sains Malaysiana 42(4)(2013): 443–448
Fracture Toughness and Impact
Strength of Hollow Epoxy Particles-Toughened Polyester Composite
(Keliatan Rekahan dan Kekuatan Hentaman bagi Komposit Poliester Terisi Partikel Epoksi
Berongga)
L.F. Low & A. AbuBakar*
School of Materials and Mineral Resources Engineering, Engineering
Campus
Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
Received: 6 June 2011/Accepted: 20 April 2012
ABSTRACT
Hollow epoxy particles (HEP) serving as reinforcing fillers were
prepared using the water-based emulsion method in this study. HEP was incorporated into
the polyester matrix at various loading, ranging from 0 wt% to 9 wt%, to
toughen the brittle polyester thermoset. The polyester composites were prepared
using the casting technique. The fracture toughness and impact strength of the
polyester composites increased with increasing the HEP loading up to 5 wt%,
after which there was a drop. The improvement in fracture toughness and impact
strength is attributed to the good polymer-filler interaction. This finding was
further supported by the scanning electron micrograph, in which it was shown
that the polyester resin was interlocked into the pore regions of the HEP filler.
The reduction in fracture toughness and impact strength of
the polyester composite were believed to be attributed to the filler
agglomeration. This filler-filler interaction would create stress concentration
areas and eventually weakened the interfacial adhesion between the polymer
matrix and the filler particles. Hence, lower fracture toughness and impact
strength of the highly HEP-filled polyester composites (above 5 wt%)
were detected.
Keywords: Filler loading; fracture toughness; hollow epoxy
particles (HEP);
impact strength; water-based emulsion
ABSTRAK
Partikel epoksi berongga (HEP) yang berperanan
sebagai pengisi penguat telah disediakan dengan menggunakan teknik emulsi
berasaskan air dalam kajian ini. Pengisi HEP ditambahkan ke dalam matrik poliester pada
jumlah kandungan yang berlainan, iaitu daripada 0 % berat sehingga 9 % berat untuk meliatkan matriks poliester yang rapuh. Komposit poliester disediakan dengan menggunakan teknik tuangan. Keliatan rekahan dan kekuatan hentaman bagi komposit poliester bertambah dengan
penambahan kandungan pengisi HEP sehingga 5 % berat, tetapi dengan
penambahan kandungan pengisi HEP yang berlebihan akan menyebabkan
kemerosotan ke atas keliatan rekahan dan kekuatan hentaman komposit poliester. Peningkatan ke atas keliatan rekahan dan kekuatan hentaman adalah
disebabkan oleh interaksi antara matriks polimer dan pengisi yang baik. Keputusan ini dapat disokong dengan mikrograf mikroskop elektron imbasan, dan ia telah menunjukkan bahawa resin poliester terikat ke dalam
kawasan berongga pada pengisi HEP. Kemerosotan ke atas
keliatan rekahan dan kekuatan hentaman bagi komposit poliester dipercayai
disebabkan oleh penggumpalan pengisi. Penggumpalan antara
pengisi-pengisi akan mewujudkan kawasan penumpuan
tegasan dan akhirnya melemahkan pelekatan antara muka antara matriks polimer
dan partikel pengisi. Oleh itu, keliatan rekahan dan kekuatan
hentaman yang lebih rendah bagi komposit poliester terisi dengan jumlah
kandungan pengisi HEP yang lebih tinggi (iaitu melebihi 5 %
berat) dapat diperhatikan.
Kata kunci: Emulsi berasaskan air; jumlah
kandungan pengisi; keliatan rekahan; kekuatan hentaman; partikel epoksi
berongga (HEP)
REFERENCES
Apicella, A., Migliaresi, C., Nicolais, L., Iaccarino, L.
& Roccotelli, S. 1983. The water ageing of unsaturated polyester-based
composites: Influence of resin chemical structure. Composites 14: 387-392.
Astruc, A., Joliff, E., Chailan, J.F.,
Aragon, E., Petter, C.O. & Sampaio, C.H. 2009. Incorporation of kaolin fillers into an
epoxy/polyamidoamine matrix for coating. Progress in Organic Coatings 65: 158-168.
Chen, Z.M., Li, S.J., Xue, F.F., Sun,
G.N., Luo, C.G., Chen, J.F. & Xu, Q. 2010. A simple and efficient route to prepare
inorganic hollow microspheres using polymer particles as template in
supercritical fluids. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 355: 45-52.
Fu, S.Y., Feng, X.Q., Lauke, B. & Mai, Y.W. 2008.
Effects of particles size, particle/matrix interface adhesion and particle
loading on mechanical properties of particulate-polymer composites Composites
Part B: Engineering 39: 933-961.
Gupta, N., Brar, B.S. &
Woldesenbet, E. 2001. Effect of filler
addition on the compressive and impact properties of glass fibre reinforced
epoxy. Bulletin of Material Science 24: 219-223.
Huang, Y.F., Xiao, H.N., Chen, S.G. & Wang, C. 2009.
Preparation and characterization of CuS hollow spheres. Ceramics
International 35: 905-907.
Johnsen, B. B., Kinloch, A. J., Mohammed, R. D., Taylor, A.
C. & Sprenger, S. 2007. Toughening mechanisms of nanoparticle-modified
epoxy polymers. Polymer 48: 530-541.
Kosar, V. & Gomzi, Z. 2010. Crosslinking on an
unsaturated polyester resin in the mould: Modelling and heat transfer studies. Applied Mathematical Modelling 34: 1586-1596.
Liang, J.Z. & Li, F.H. 2007. Heat transfer in polymer
composites filled with inorganic hollow micro-spheres: A theoretical model. Polymer Testing 26: 1025-1030.
Low, L.F. & Abu Bakar, A. 2011. Advanced hollow epoxy particles-filled
composites. Journal of Composite Materials 45: 2287-2299.
Low, L.F. & Abu Bakar, A. 2012. Preparation, characterization and
improvement of hollow epoxy particle-toughened vinyl ester composites for
high-end applications. Journal of Applied Polymer Science 123:
3064-3071.
Shivamurthy, B., Siddaramaiah &
Prabhuswamy, M.S. 2009. Influence of SiO2 fillers
on sliding wear resistance and mechanical properties of compression moulded
glass epoxy composites. Journal of Mineral & Materials
Characterization & Engineering 8: 513-530.
Suresha, B., Kumar, B.N.R.,
Venkataramareddy, M. & Javaraju, T. 2010. Role of micro/nano fillers on mechanical
and tribological properties of polyamide 66/polypropylene composites. Materials
and Design 31: 1993-2000.
Visco,
A.M., Calabrase, L. & Cianciafara, P. 2008. Modification of polyester resin
based composites induced by seawater absorption. Composite Part
Watanabe, H., Mizuno, Y., Endo, T., Wang, X.W., Fuji, M.
& Takahashi, M. 2009. Effect of initial pH on formation of
hollow calcium carbonate particles by continuous CO2 gas
bubbling into CaCl2 aqueous solution. Advanced
Powder Technology 20: 89-93.
Wetzel, B., Rosso, P., Haupert, F.
& Friedrich, K. 2006. Epoxy
nanocomposites - Fracture and toughening mechanisms. Engineering Fracture
Mechanics 73: 2375-2398.
Yuan, J.J., Zhou, G.B. & Pu, H.T.
2008. Preparation and properties of
nation/hollow silica spheres composite membranes. Journal of Membrane
Science 325: 742-748.
Zaini, M.J., Fuad, M.Y.A., Ismail, Z., Mansor, M.S. &
Mustafah, J. 1996. The effect of filler content and size on
the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International 40: 51-55.
Zhao, H., Li, Y., Liu, R.J., Zhao, F.Y. & Hu, Y.Q. 2008.
Synthesis method for silica needle- shaped nano-hollow structure. Materials
Letters 62: 3401-3403.
*Corresponding
author; email: azhar@eng.usm.my
|