Sains Malaysiana 42(4)(2013): 449–457

 

Rigid Polyurethane Foam from Glycolysed Polyethylene Terephthalate

Dissolved in Palm-based Polyol

(Busa Poliuretana Tegar daripada Sisa Polietilena Tereftalat Terglikolisis Terlarut Poliol Sawit)

 

 

Khairiah Haji Badri*

Polymer Research Center, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

Lily Iliyana Mohd Dawi & NurAshikin Abd Aziz

School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

Received: 8 June 2011/Accepted: 15 March 2012

 

ABSTRACT

An investigation on the thermal and mechanical properties of rigid polyurethane (PU) foam from polyethylene terephthalate (PET) waste (of plastic drinking bottles) was conducted. The PET waste was glycolysed with ethylene glycol prior to blending with palm based-polyol (PKO-p). This blend was then reacted with 2, 4-methylene diphenyl diisocyanate (MDI) at a ratio of 1:1 to form the PU foam. The incorporation of the glycolysed PET (g-PET) into the PKO-p was studied at 50, 70 and 100% w/w loading. PU foam prepared from 100% w/w g-PET (without PKO-p) resulted in PU with high glass transition temperature and mechanical strength. This water-blown foam has molded and core densities of 182 kg m-3 and 179 kg m-3, respectively, with maximum compressive stress and modulus at 396 kPa and 1920 kPa, respectively. An initial enthalpy value of 3164.8 cal g-1 and a glass transition temperature of 65ºC were observed.

 

Keywords: Glycolysis; palm based-polyol; polyethylene terephthalate waste; rigid polyurethane foam

 

ABSTRAK

Suatu kajian tentang sifat terma dan mekanik busa tegar poliuretana (PU) daripada sisa polietilena tereftalat (PET) (botol plastik minuman) telah dijalankan. Sisa PET ini telah diglikolisiskan sebelum diadun bersama poliol sawit (PKO-p). Adunan ini kemudiannya ditindak balaskan dengan 2, 4-metilena difenil diisosianat (MDI) pada nisbah 1:1 untuk menghasilkan busa PU. Kemasukan PET terglikolisis (g-PET) ini ke dalam PKO-p dikaji pada penambahan 50, 70 dan 100% bt/bt. Busa PU yang disediakan daripada 100% bt/bt g-PET (tanpa PKO-p) menghasilkan PU yang mempunyai suhu peralihan kaca dan kekuatan mekanik tertinggi. Busa yang disediakan dengan agen pembusaan air ini mempunyai ketumpatan teracu dan teras masing-masing 182 kg m-3 dan 179 kg m-3 dengan tegasan dan modulus mampatan maksima pada masing-masing 396 kPa dan 1920 kPa. Nilai entalpi awal 3164.8 kal g-1 dan suhu peralihan kaca pada 65ºC direkodkan.

 

Kata kunci: Busa poliuretana tegar; glikolisis; poliol sawit; sisa polietilena tereftalat

REFERENCES

Abdelaal, M.Y., Sobahi, T.R. & Makki, M.S.I. 2011. Chemical transformation of PET waste through glycolysis. Construction and Building Materials 25(8): 3267-3271.

Awaja, F. & Pavel, D. 2005. Recycling of PET. European Polymer Journal 41(7): 1453-1477.

Badri, K.H., Ahmad, S.H. & Zakaria, S. 2000. Development of zero ODP rigid polyurethane foam from RBD palm kernel oil. Journal of Material Science Letters 19: 1355-1356.

Badri, K.H., Ahmad, S.H. & Zakaria, S. 2001. The production of a high functionality RBD palm kernel oil-based polyester polyol. Journal of Applied Polymer Science 81: 384-389.

Badri, K.H., Othman, Z. & Ahmad, S.H. 2004. Rigid polyurethane foams from oil palm resources. Journal of Materials Science 39(16-17): 5541-5542.

Badri, K.H., Othman, Z. & Mohd Razali, I. 2005. Mechanical properties of polyurethane composites from oil palm resources. Iranian Polymer Journal 14(5): 987-993.

Bartha, E., Iancu, S., Duldner, M., Vuluga, M.D., Draghici, C., Teodorescu, F. & Gherase, D. 2011. Glycolysis of PET wastes with isosorbide identification and characterization of hydroxy oligoesters. Revista De Chimie62(4): 401-408.

Brady, E.J. & Senesse, F. 2004. Chemistry Matter and Its Changes. 4th Ed. Hoboken, New Jersey: John Wiley & Sons Inc.

Chuayjuljit, S., Sangakdee, T. & Saravari, O. 2007. Processing and properties of palm oil-based rigid polyurethane foam. Journal of Metals, Materials and Mineral 17: 17-23.

Cowie, J.M.G. 1991. Polymers Chemistry & Physics of Modern Materials. 2nd Ed. London: Chapman & Hall.

Imran, M., Kim, B.K., Han, M., Cho, B.G. & Kim, D.H. 2010. Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polymer Degradation and Stability 95(9): 1686-1693.

Jung, H.C., Kang, S.J., Kim, W.N., Lee, Y.B., Choe, K.H., Hong, S.H., Kim, S.B. 2000. Properties of crosslinked polyurethane synthesized from 4, 4-diphenylmethane diisocyanate and polyester polyol. Journal of Applied Polymer Science 78(3): 624-630.

Lee, S.T. & Ramesh, N.S. 2004. Polymeric Foams: Mechanism and Materials. Boca Raton, Florida: CRC Press.

Liang, K. & Shi, S.Q. 2010. Soy-based polyurethane foam reinforced with carbon nanotubes. Key Engineering Materials 419-420: 477-480.

Limpiti, T. & Potiyaraj, P. 2009. Mechanical property improvement of UPE resin from glycolyzed PET with commercial UPE resin. Journal of Metals, Materials and Mineral 19(1): 45-51.

Lin, H. 1997. The structure and property relationships of commercial foamed plastics. Polymer Testing 16: 429-443.

Lopez-Fonseca, R., Duque-Ingunza, I., De Rivasa, B., Arnaiz, S. & Gutierrez-Ortiz, J.I. 2010. Chemical recycling of post consumer PET wastes by glycolysis in the presence of metal salts. Polymer Degradation and Stability 95: 1022-1028.

Matuana, L.M., Chul, B.P. & Balatinez, J.J. 1998. Structure and mechanical properties of microcellular foamed polyvinyl chloride. Journal of Cellular Polymer 17: 1-15.

Mosadeghzad, Z., Ahmad, I., Daik, R., Ramli, A. & Jalaludin, Z. 2009. Preparation and properties of acacia sawdust/ UPR composite based on recycled PET. Malaysian Polymer Journal 4(1): 30-41.

Rivera-Armenta, J.L., Heinze, T.H. & Mendoza-Martunez, A.M. 2004. New polyurethane foams modified with cellulose derivatives. European Polymer Journal 40: 2803-2812.

Saravari, O., Vessabutr, B. & Pimpan, V. 2004. Synthesis of urethane oils from waste poly(ethyleneterephthalate) bottles. Journal of Applied Polymer Science 92: 3040-3045.

Tawa, T. & Ito, S. 2006. The role of hard segments of aqueous polyurethane-urea dispersion in determining the colloidal characteristics and physical properties. Polymer Journal 38: 686–693.

Vaidya, U.R. & Nadkarni, V.M. 1988. Unsaturated polyester resins from poly (ethylene terephthalate) waste-mechanical and dynamic mechanical properties. Industrial & Engineering Chemistry Research 27: 2056-2060.

Wong, C.S. & Badri, K.H. 2010. Sifat terma dan kerintangan api poliuretana berasaskan minyak isirung sawit dan minyak kacang soya. Sains Malaysiana39(5): 775-784.

Zollner, R. & Bock, R. 1993. Polyurethane Handbook. 2nd Ed. New York: Hanser Publisher.

 

*Corresponding author; email: kaybadri@ukm.my

 

 

previous