Sains Malaysiana 42(4)(2013): 515–520
Separation
of Hydridocarbonyltris(triphenylphosphine) Rhodium (I) Catalyst Using
Solvent
Resistant Nanofiltration Membrane
(Pemisahan Pemangkin Rodium (I) Hidridokarboniltris(trifenilfosfin)
Menggunakan Membran Nanoturasan Tahan Pelarut)
Nur
S. A. Razak & Hilmi Mukhtar
Chemical
Engineering Department, Universiti Teknologi PETRONAS
Bandar
Seri Iskandar, 31750 Tronoh, Malaysia
Maizatul
S. Shaharun* & Mohd F. Taha
Fundamental
and Applied Sciences Department, Universiti Teknologi PETRONAS
Bandar
Seri Iskandar, 31750 Tronoh, Malaysia
Received:
24 June 2011 /Accepted: 8 March 2012
ABSTRACT
An investigation was conducted into the nanofiltration of rhodium
tris(triphenyl-phosphine) [HRh(CO)(PPh3)3]
catalyst used in the hydroformylation of olefins. The large size of the
catalyst (>400 Da) – relative to other components of the reaction
provides the opportunity for a membrane separation based on retention of the
catalyst species while permeating the solvent. The compatibility of the
solvent-polyimide membrane (STARMEMTM 122
and STARMEMTM 240) combinations was
assessed in terms of the membrane stability in solvent plus non-zero solvent
flux at 2.0 MPa. The morphology of the membrane was studied by field emission
scanning electron microscopy (FESEM). The solvent flux and
membrane rejection of HRh(CO)(PPh3)3 was
then determined for the catalyst-solvent-membrane combination in a dead-end
pressure cell. Good HRh(CO)(PPh3)3 rejection
(>0.93) coupled with good solvent fluxes (>72 L/m2 h1 at 2.0 MPa) were obtained in
one of the systems tested. The effect of pressure and catalyst concentration on
the solvent flux and catalyst rejection was conducted. Increasing pressure
substantially improved both solvent flux and catalyst rejection, while
increasing catalyst concentration was found to be beneficial in terms of
substantial increases in catalyst rejection without significantly affecting the
solvent flux.
Keywords: Catalyst recycle; hydroformylation; membrane separation;
solvent resistant nanofiltration
ABSTRAK
Penyelidikan telah dijalankan ke atas teknik nanoturasan kepada
pemangkin rodium tris(trifenilfosfin) [HRh(CO)(PPh3)3]
yang digunakan dalam proses penghidroformilan olefin. Saiz pemangkin yang besar
(>400 Da) – berbanding dengan komponen lain dalam tindak balas memberi
ruang kepada penggunaan membran yang berasaskan kepada penggunaan spesies
pemangkin di samping peresapan pelarut. Keserasian pelarut-membran poliimida (STARMEMTM122
dan STARMEMTM240) telah dinilai daripada
segi kestabilan membran di dalam pelarut, berserta nilai fluks pelarut bukan
sifar pada 2.0 MPa. Peresapan fluks dan pengekalan pemangkin HRh(CO)(PPh3)3 menggunakan
membran polyimide, telah dikaji untuk melihat kombinasi
pemangkin-pelarut-membran di dalam sel tekanan tinggi. Pengekalan pemangkin
[HRh(CO)(PPh3)3] yang baik (>0.93) di samping
peresapan fluks pelarut yang baik (>72 L/m2 h1) diperoleh daripada salah satu sistem yang
dikaji. Kesan daripada tekanan dan kepekatan pemangkin terhadap fluks pelarut
dan pengekalan pemangkin telah dijalankan. Peningkatan tekanan yang ketara
dapat menambah baik peresapan fluks pelarut dan juga pemangkin. Manakala
peningkatan kepekatan pemangkin dapat meningkatkan pengekalan pemangkin tanpa
mempengaruhi peresapan fluks pelarut.
Kata kunci: Hidroformilasi;
kitar semula pemangkin; nanoturasan tahan pelarut; pemisahan menggunakan
membran
REFERENCES
Behr, A., Henze, G., Obst, D. & Turkowski,
B. 2005. Selection process of new solvents in temperature-dependent
multi-component solvent systems and its application in isomerising
hydroformylation. Green Chem. 7: 645-649.
Cornils, B. & Herrmann, W.A. 2002. Applied
Homogeneous Catalysis with Organometallic Compounds. 2nd edition.
New York, USA: Wiley-VCH.
Garton,
R.D., Ritchie, J.T. & Caers, R.E. 2003. Hydroformylation process
improvement in catalyst recovery. PCT International Applications, WO
2003/082789 A2: 20.
Luthra,
S.S., Yang, X., Freitas dos Santos, L.M., White, L.S. & Livingston, A.G.
2002. Homogeneous phase transfer catalyst recovery and re-use using solvent
resistant membranes. J. Membr. Sci. 201: 65-75.
Machado,
D.R., Hasson, D. & Semiat, R. 1999. Effect of solvent properties on
permeate flow through nanofiltration membranes. Part I. Investigation of
parameters affecting solvent flux. J. Membr. Sci. 163: 93-102.
Scarpello,
J.T., Nair, D., Freitas dos santos, L.M., White, L.S. & Livingston, A.G.
2002. The separation of homogeneous organometallic catalysts using solvent
resistant nanofiltration. J. Membr. Sci. 203: 71-85.
Shaharun,
M.S., Dutta, B.K., Mukhtar, H. & Maitra, S. 2009. Hydroformylation of
1-octene using rhodium–phosphite catalyst in a thermomorphic solvent
system. Chem. Eng. Sci. 65: 273-281.
Yang,
X.J., Livingston, A.G. & Freitas dos Santos, L. 2001. Experimental
observations of nanofiltration with organic solvents. J. Membr. Sci. 190:
45-55.
Whu,
J.A., Baltzis, B.C. & Sirkir, K.K. 2000. Nanofiltration studies of larger
organic microsolutes in methanol solutions. J. Membr. Sci. 170: 159-172.
*Corresponding
author; e-mail: maizats@petronas.com.my
|