Sains Malaysiana 42(4)(2013): 521–527

 

Synthesis of Hybrid Polymer and Its Application as Distributed Feedback Laser

(Sintesis Polimer Hibrid dan Aplikasinya Sebagai Laser Suap Balik Tertabur)

 

 

Sahrul Hidayat*, Fitrilawati, A. Bahtiar & R.E. Siregar

Department of Physics, Faculty of Mathematics and Natural Science, University of Padjadjaran, Jatinangor, West Java, Indonesia

 

R. Hidayat

Department of Physics, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, West Java, Indonesia

 

Received: 25 June 2011 / Accepted: 13 January 2012

 

ABSTRACT

The hybrid inorganic-organic polymer was synthesized by sol-gel method from TMSPMA. Organic dye laser of DCM was added into hybrid polymer host matrices by means of solution method at room temperature. The distributed feedback (DFB) laser was fabricated from hybrid polymer-DCM film using Lloyd Mirror interference technique. The surface profile of device was observed using AFM. From the AFM image, we obtained that the grating period was about 385 nm and the depth of corrugation was about 60 nm. The characteristics of DFB laser was investigated by optical pumping using SHG Nd-YAG (λ=532 nm). The laser emission has been demonstrated at 582 nm with the spectral width (FWHM) less than 2 nm at pumping power of 14.00 mJ/pulse cm2. The experimental results have been confirmed by the theoretical model using coupled mode theory. The confirmation of experimental works by the theoretical model has a good result.

 

Keywords: Coupled mode theory; DFB laser; hybrid polymer; sol-gel method

 

ABSTRAK

Polimer hibrid telah disintesis dengan kaedah sol-gel daripada TMSPMA. Dye laser DCM telah ditambahkan ke dalam matriks polimer hibrid dengan menggunakan kaedah larutan pada suhu bilik. Laser Suap Balik Tertabur (DFB) telah difabrikasi daripada filem polimer hybrid-DCM menggunakan teknik pembelauan Lloyd Mirror. Profil pada permukaan daripada peranti laser diamati menggunakan AFM. Daripada imej AFM, kita boleh mengukur kala parutan ~385 nm dan kedalaman kerut ~60 nm. Ciri laser DFB telah dikaji dengan pam optik menggunakan SHG Nd-YAG (λ = 532 nm). Pemancaran laser telah ditunjukkan pada 582 nm dengan lebar spektrum (FWHM) kurang daripada 2 nm untuk daya pam 14,00 mJ/denyut cm2. Hasil eksperimen telah disahkan oleh model teori menggunakan teori mod terganding. Pengesahan hasil kerja eksperimen dengan model teori mempunyai hasil yang baik.

 

Kata kunci: Kaedah sol-gel; laser DFB; polimer hybrid; teori mod tergandin

REFERENCES

Cheng, L.H., Zhenga, L.Y., Menga, L., Lia, G.R., Gub, Y., Zhangb, F.P., Chuc, R.Q. & Xu, Z.J. 2012. Electrical properties of Al2O3-doped ZnO varistors prepared by sol-gel process for device miniaturization. Ceramics International 38 (Supplement) 1: S457-S461.

Darracq, B., Chaput, F., Lahlil, K., Boilot, J.P., Levy, Y., Alain, V., Ventelon, L. & Desce, M.B. 1998. Novel photorefractive sol-gel materials. Optical Materials 9: 265-270.

Hidayat, R., Herman, F., Ojima, M. & Ozaki, M. 2010. Fabrication of distributed feedback grating from hybrid polymer which exhibits photo-pumped lasing action, International Journal of Nanoscience 9(4): 307-310.

Hidayat, S., Pitriana, P., Hidayat, R., Fitrilawati, B. A., Siregar, R.E. & Ozaki, M. 2011. Application of hybrid polymer as a two dimensional grating and its lasing characteristic. Sains Malaysiana 40(1): 39-42.

Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, -U.J., Frohlich, L., Buestrich, R., Popall, M., Streppel, U., Dannberg, P., Wachter, C. & Brauer, A. 2003. Inorganic- Wavelength organic hybrid materials for application in optical devices. Thin Solid Films 442: 194-200.

Leonetti, M., Sapienza, R., Ibisate, M., Conti, C. & Lopez, C. 2009. Optical gain in DNA-DCM for lasing in photonic materials. Optics Letters 34(24): 3764-3766.

Paquet, C. & Kumacheva, E. 2008. Nanostructured polymers for photonic. Materials Today 11(8): 48-56.

Soppera, O., Croutxe, B.C., Carre, C. & Blanc, D. 2002. Design of photoinduced relief optical devices with hybrid sol-gel materials. Applied Surface Science 186: 91-94.

Vyawahare, S., Griffiths, A.D. & Merten, A.C. 2010. Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chemistry & Biology 17(10): 1052-1065.

Yariv, A. & Yeh, P. 2007. Optical Electronics in Modern Communications. London: Oxford University Press.

Yurista, G.L., Friesem, A.A, Pawlowski, E., Kuller, L., Ludwig, R., Weber, H.G., Donval, A., Toussaere, E. & Zyss, J. 2001. Hybrid semiconductor polymer resonant grating waveguide structures. Optical Meterials 17: 149-154.

 

 

*Corresponding author; email: sahrulh@yahoo.com

 

 

previous