Sains Malaysiana 42(4)(2013): 521–527
Synthesis
of Hybrid Polymer and Its Application as Distributed Feedback Laser
(Sintesis Polimer Hibrid dan Aplikasinya Sebagai Laser Suap Balik
Tertabur)
Sahrul Hidayat*, Fitrilawati, A. Bahtiar & R.E. Siregar
Department of Physics, Faculty of Mathematics and Natural
Science, University of Padjadjaran, Jatinangor, West Java, Indonesia
R. Hidayat
Department of Physics, Faculty of Mathematics and Natural
Science, Bandung Institute of Technology, Bandung, West Java, Indonesia
Received: 25 June 2011 / Accepted: 13 January 2012
ABSTRACT
The hybrid inorganic-organic polymer was synthesized by sol-gel
method from TMSPMA. Organic dye laser of DCM was
added into hybrid polymer host matrices by means of solution method at room
temperature. The distributed feedback (DFB) laser was fabricated from
hybrid polymer-DCM film using Lloyd Mirror
interference technique. The surface profile of device was observed using AFM.
From the AFM image, we obtained that the grating period was about
385 nm and the depth of corrugation was about 60 nm. The characteristics of DFB laser
was investigated by optical pumping using SHG Nd-YAG (λ=532
nm). The laser emission has been demonstrated at 582 nm with the spectral width
(FWHM)
less than 2 nm at pumping power of 14.00 mJ/pulse cm2.
The experimental results have been confirmed by the theoretical model using
coupled mode theory. The confirmation of experimental works by the theoretical
model has a good result.
Keywords: Coupled mode theory; DFB laser;
hybrid polymer; sol-gel method
ABSTRAK
Polimer hibrid telah disintesis dengan kaedah sol-gel daripada TMSPMA.
Dye laser DCM telah ditambahkan ke dalam matriks polimer hibrid
dengan menggunakan kaedah larutan pada suhu bilik. Laser Suap Balik Tertabur (DFB)
telah difabrikasi daripada filem polimer hybrid-DCM menggunakan
teknik pembelauan Lloyd Mirror. Profil pada permukaan daripada peranti laser
diamati menggunakan AFM. Daripada imej AFM,
kita boleh mengukur kala parutan ~385 nm dan kedalaman kerut ~60 nm. Ciri laser DFB telah dikaji dengan pam optik menggunakan SHG Nd-YAG (λ
= 532 nm). Pemancaran laser telah ditunjukkan pada 582 nm dengan lebar spektrum
(FWHM)
kurang daripada 2 nm untuk daya pam 14,00 mJ/denyut cm2.
Hasil eksperimen telah disahkan oleh model teori menggunakan teori mod
terganding. Pengesahan hasil kerja eksperimen dengan model teori mempunyai
hasil yang baik.
Kata kunci: Kaedah sol-gel; laser DFB; polimer hybrid; teori mod tergandin
REFERENCES
Cheng, L.H., Zhenga, L.Y., Menga, L., Lia, G.R.,
Gub, Y., Zhangb, F.P., Chuc, R.Q. & Xu, Z.J. 2012. Electrical properties of
Al2O3-doped ZnO varistors prepared by
sol-gel process for device miniaturization. Ceramics International 38
(Supplement) 1: S457-S461.
Darracq, B., Chaput, F., Lahlil, K., Boilot,
J.P., Levy, Y., Alain, V., Ventelon, L. & Desce, M.B. 1998. Novel
photorefractive sol-gel materials. Optical Materials 9: 265-270.
Hidayat, R., Herman, F., Ojima, M. & Ozaki,
M. 2010. Fabrication of distributed feedback grating from hybrid polymer which
exhibits photo-pumped lasing action, International Journal of Nanoscience 9(4):
307-310.
Hidayat, S., Pitriana, P., Hidayat, R.,
Fitrilawati, B. A., Siregar, R.E. & Ozaki, M. 2011. Application of hybrid
polymer as a two dimensional grating and its lasing characteristic. Sains
Malaysiana 40(1): 39-42.
Houbertz, R., Domann, G., Cronauer, C., Schmitt,
A., Martin, H., Park, -U.J., Frohlich, L., Buestrich, R., Popall, M., Streppel,
U., Dannberg, P., Wachter, C. & Brauer, A. 2003. Inorganic- Wavelength organic hybrid materials for application in optical devices. Thin Solid Films 442: 194-200.
Leonetti, M., Sapienza, R., Ibisate, M., Conti, C. &
Lopez, C. 2009. Optical gain in DNA-DCM for lasing in photonic materials. Optics
Letters 34(24): 3764-3766.
Paquet, C. & Kumacheva, E. 2008. Nanostructured polymers
for photonic. Materials Today 11(8): 48-56.
Soppera, O., Croutxe, B.C., Carre, C. & Blanc, D. 2002.
Design of photoinduced relief optical devices with hybrid sol-gel materials. Applied
Surface Science 186: 91-94.
Vyawahare, S., Griffiths, A.D. & Merten, A.C. 2010.
Miniaturization and parallelization of biological and chemical assays in
microfluidic devices. Chemistry & Biology 17(10): 1052-1065.
Yariv, A. & Yeh, P. 2007. Optical Electronics in
Modern Communications. London: Oxford University Press.
Yurista, G.L., Friesem, A.A, Pawlowski, E., Kuller, L.,
Ludwig, R., Weber, H.G., Donval, A., Toussaere, E. & Zyss, J. 2001. Hybrid
semiconductor polymer resonant grating waveguide structures. Optical
Meterials 17: 149-154.
*Corresponding author; email: sahrulh@yahoo.com
|