Sains
Malaysiana 42(6)(2013): 811–818
Fire-retardant
Polyester Composites from Recycled Polyethylene Terephthalate (PET)
Wastes
Reinforced with Coconut Fibre
(Komposit Poliester Perencat Api Berasaskan Bahan Buangan PET Kitar Semula Diperkuat
Serabut Kelapa)
Nurul Munirah Abdullah & IshakAhmad*
School of Chemical Sciences and Food
Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor, Malaysia
Received: 28 May 2012/Accepted:
2 October 2012
ABSTRACT
Coconut fibre reinforced composite was prepared
by blending unsaturated polyester resin (UPR) from waste PET with 0.3 v% of
coconut fibre. The coconut fibres were pre-treated with sodium hydroxide
followed by silane prior to inclusion into the UPR. The untreated
coconut fibres reinforced composite were used as a
control. Dricon® as a phosphate type of
flame retardant was then added to the composite to reduce the flammability of
the composite. The amount of Dricon® was varied from 0 to 10 wt% of the
overall mass of resin. The burning properties and limiting
oxygen index (LOI)
of the treated and untreated composites increased with the addition of Dricon®. The tensile
strength and modulus of both composites were also increased with the addition
of Dricon®. The treated fibre
composite with 5 wt% Dricon® showed the highest burning time and LOI with
the values of 101.5 s and 34 s, respectively. The optimum
tensile strength and modulus for treated fibre composite was at 5 wt% Dricon® whereas the untreated fibre composite was at
2.5 wt% loading of Dricon®. Thermogravimetry (TGA) analysis indicated that the degradation
temperature increased with the addition of Dricon® up to 5 wt% into UPR/coconut fibre composites. Morphological observations indicated better distribution of Dricon® for treated fibre composite resulted in
enhancement of the tensile properties of the treated fibre composite.
Keywords: Coconut fiber; flame retardant;
polyester; polyethylene terephthalate
ABSTRAK
Komposit diperkuat serabut kelapa disediakan
dengan mengadunkan resin poliester tak tepu (UPR) daripada bahan
buangan PET pada komposisi 0.3% isi padu serabut kelapa. Pra-rawatan serabut kelapa
telah dilakukan menggunakan natrium hidroksida diikuti oleh silana sebelum
dicampurkan ke dalam UPR. Komposit
diperkuat serabut kelapa tanpa rawatan telah digunakan sebagai kawalan. Dricon® iaitu sejenis perencat api fosfat kemudiannya ditambah kepada komposit untuk mengurangkan kebolehbakaran
komposit. Komposisi Dricon® telah
divariasi antara 0-10% berat jisim keseluruhan resin. Sifat
pembakaran dan indeks pengehadan oksigen (LOI) bagi komposit
terawat dan tanpa rawatan didapati telah meningkat dengan penambahan Dricon®. Kekuatan regangan
dan modulus kedua-dua komposit juga telah meningkat dengan penambahan Dricon®. Komposit yang
diperkuat serabut terawat dengan 5% berat Dricon® menunjukkan
masa pembakaran dan LOI yang tertinggi dengan nilai 101.5 s dan 34
s masing-masing. Kekuatan regangan dan modulus yang
optimum bagi komposit dengan serabut terawat adalah pada 5% berat Dricon® manakala komposit dengan serabut tidak
terawat adalah pada 2.5% berat Dricon®. Analisis
termogravimetri (TGA) menunjukkan bahawa suhu degradasi
meningkat dengan penambahan Dricon® sehingga 5% berat yang
ditambah ke dalam komposit UPR/serabut kelapa. Pemerhatian
morfologi menunjukkan penyebaran Dricon® yang lebih baik bagi
komposit dengan serabut yang dirawat menyebabkan peningkatan sifat regangan
komposit.
Kata kunci: Kerintangan api; poliester; polietilena tereftalat; serabut kelapa
REFERENCES
Abu Bakar, D.R.,
Ahmad, I. & Ramli, A. 2006. Chemical
recycling of PET waste from soft drink bottles to produce a thermosetting
polyester resin. Malaysia Journal of Chemistry 8(1):
022-026.
Ahmad, I.,
Mosadeghzad, Z., Daik, R., Ramli, A. 2008. The effect of alkali treatment and
filler size on the properties of sawdust/UPR composites based on recycled PET
wastes. Journal of Applied Polymer
Science 109: 3651-3658.
Atta, A.M., Nassar, I.F. & Bedawy,
H.M. 2007. Unsaturated polyester resins based on resin maleic anhydride adduct
as corrosion protections of steel. Reactive & Functional Polymers 67:
617-626.
Chen, D.Q., Wang,
Y.Z., Hu, X.P., Wang, D.Y., Qu, M.H. & Yang, B. 2005. Flame retardant and anti-dripping effects of a Novel
char-forming flame retardant for the treatment of poly(ethylene
terephthalate) fabrics. Polymer Degradation and Stability 88: 349-356.
Chong, E.L., Ahmad, I., Dahlan, H.M.,
Abdullah, I. 2010. Reinforcement of natural rubber/high density polyethylene
blends with electron beam irradiated liquid natural rubber-coated rice husk. Radiation Physics and Chemistry 79:
906-911.
Dvir, H., Gottlieb,
M., Daren, S. & Tartakovsky, E. 2003. Optimization of a flame retarded polypropylene composite. Composites
Science and Technology 63: 1865 1875.
Farias, M.A., Farina, M.Z., Pezzin,
A.P.T. & Silva, D.A.K. 2009. Unsaturated polyester composites reinforced
with fibre and powder of Peach Palm: Mechanical characterization and water
absorption profile. Materials Science and Engineering C 29: 510-513.
Lewin, M. 2005 Unsolved problems and
unanswered questions in flame retardance of polymers. Polymer
Degradation and Stability 88: 13-19.
Roth, M.,
Schwarzinger, C., Mueller, U. & Schmidt, H. 2007. Determination of reaction mechanism and evaluation of flame retardants in wood-melamine resin composites. Journal
of Analytical and Applied Pyrolysis 79: 306-312.
Shih, Y., Wang, Y., Jeng, R. & Wei,
K. 2004. Expandable graphite systems for phosphorus-containing
unsaturated polyesters I. Enhanced thermal properties and flame retardancy. Polymer Degradation and Stability 86: 339-348.
Suardana,
N.P.G., Piao, Y. & Lim, J.K. 2011. Mechanical properties of hemp fibres and
hemp/PP composites: Effects of chemical surface treatment. Materials Physics
and Mechanics 11: 1-8
Suppakarn, N. & Jarukumjorn, K. 2009.
Mechanical properties and flammability of sisal/PP composites: Effect of flame
retardant type and content. Composites: Part B 40: 613-618.
Tan, C., Ahmad, I.,
Heng, M. 2011. Characterization of polyester
composites from recycled polyethylene terephthalate reinforced with empty fruit
bunch fibers. Materials and Design 32: 4493-4501.
Vargas, A.F., Orozco, V.H., Rault, F.,
Giraud, S., Devaux, E. & Lopez, B.L. 2010. Influence of fibre-like
nanofillers on the rheological, mechanical, thermal and fire properties of
polypropylene: An application to multifilament yarn. Composites: Part A: 1797-1806.
Yang, W., Hu, Y., Tai, Q., Lu, H.,
Song, L. & Yuen, R.K.K. 2011. Fire and
mechanical performance of nanoclay reinforced glass-fibre/PBT co
*Corresponding author; email: gading@ukm.my
|