Sains Malaysiana 42(6)(2013): 819–826

 

Methylene Blue Adsorption on Graphene Oxide

(Penjerapan Metilena Biru ke Atas Grafin Oksida)

 

 

Chin Hua Chia*, Nur Fazlinda Razali, Mohd Shaiful Sajab, Sarani Zakaria

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Nay Ming Huang

Low Dimensional Materials Research Centre, Physics Department, University of Malaya

50603 Kuala Lumpur, Malaysia

 

Hong Ngee Lim

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

 

Received: 13 June 2012/Accepted: 13 September 2012

 

ABSTRACT

In this study, graphene oxide (GO), produced using the simple Hummer’s method, was used as adsorbent to remove methylene blue (MB) from aqueous solution. Characterizations using transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy were carried out on the GO before the MB adsorption experiments. The adsorption kinetics and isotherm studies were conducted under different conditions (pH = 3-7 and MB concentration = 100-400 mg/L) to examine the adsorption efficiency of the GO towards MB in aqueous solution. The adsorption kinetics data were analyzed using different kinetic models to investigate the adsorption behavior of MB on GO. The obtained results showed that the maximum adsorption capacity of the GO towards MB can achieve up to ~700 mg/g for the adsorption at 300 mg/L MB. The adsorption kinetic data were found to fit pseudo-second order model as compared with pseudo-first-order model. The intraparticle diffusion model suggested that the adsorption process of GO towards MB was dominated by the external mass transfer of MB molecules to the surface of GO.

 

Keywords: Adsorption isotherm; adsorption kinetics; intraparticle diffusion; methylene blue

 

 

ABSTRAK

Dalam penyelidikan ini, grafin oksida (GO) yang disediakan melalui kaedah Hummer telah digunakan sebagai bahan penjerap untuk menyingkirkan metilena biru (MB) daripada larutan akues. Pencirian menggunakan mikroskop elektron transmisi (TEM) dan spektroskopi inframerah transmisi Fourier (FTIR) telah dilakukan ke atas GO sebelum eksperimen penjerapan MB. Data kinetik penjerapan telah dianalisis dengan menggunakan model kinetik yang berlainan untuk mengkaji sifat penjerapan MB ke atas GO. Keputusan yang diperoleh menunjukkan bahawa kapasiti penjerapan maksimum GO terhadap MB mencapai ~700 mg/g daripada larutan MB berkepekatan 300 mg/L. Data kinetik penjerapan didapati berpadanan dengan model pseudo-tertib kedua. Model resapan intrazarah mencadangkan bahawa proses penjerapan MB ke atas GO adalah didominasi oleh pemindahan jisim luaran molekul MB ke permukaan GO.

 

Kata kunci: Isoterm penjerapan; kinetik penjerapan; metilena biru; resapan intrazarah

REFERENCES

Annadurai, G., Juang, R-S. & Lee, D-J. 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials B92: 263-274.

Batzias, F.A. & Sidiras, D.K. 2007. Simulation of dye adsorption by beech sawdust as affected by pH. Journal of Hazardous Materials 141: 668-679.

Deng, X., Lu, L., Li, H. & Luo, F. 2010. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of Hazardous Materials 183: 923-930.

Dural, M.U., Cavas, L., Papageorgiou, S.K. & Katsaros, F.K. 2011. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chemical Engineering Journal 168: 77-85.

Gong, J-L., Wang, B., Zeng, G-M., Yang, C-P., Niu, C-G., Niu, Q-Y., Zhou, W-J. & Liang, Y. 2009. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials 164: 1517-1522.

Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34: 451-465.

Hou, P-X., Xu, S-T., Ying, Z., Yang, Q-H., Liu, C. & Cheng, H-M. 2003. Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41: 2471-2476.

Hummers, W.S. & Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of American Chemical Society 80: 1339-1339.

Karagöz, S., Tay, T., Ucar, S. & Erdem, M. 2008. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology 99: 6214-6222.

Lagergren, S. 1898. About the theory of so-called adsorption of soluble substance. Kungliga Svenska. Vetenskapsakademiens. Handlingar: 21: 1-39.

Lu, C. & Chou, H. 2006. Adsorption of zinc(II) from water with purified carbon nanotubes. Chemical Engineering Science 61: 1138-1145.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. Science 306: 666-669.

Pasricha, R., Gupta, S. & Srivastava, A.K. 2009. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 5: 2253-2259.

Ramesha, G.K., Vijayakumar, A., Muralidhara, H.B. & Sampath, S. 2011. Graphene and graphene oxide as effective adsorbents towards anionic and cationic dyes. Journal of Colloid and Interface Science 361: 270-277.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology 102: 7237-7243.

Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A. & Niu, L. 2010. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing Biosensors and Bioelectronics 25: 1070-1074.

Shen, X., Wu, J. & Zhou, H. 2010. One-pot solvothermal synthesis and magnetic properties of graphene-based magnetic nanocomposites. Journal of Alloys and Compounds 506: 136-140.

Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials 154: 337-346.

Wang, B., Park, J., Wang, C., Ahn, H. & Wang, G. 2010. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochimica Acta 55: 6812-6817.

Weber, W.J. & Morris, J.C. 1963. Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division 89: 31-59.

Xue, X-Y., Ma, C-H., Cui, C-X. & Xing, L-L. 2011. High lithium storage performance of α-Fe2O3/graphene nanocomposites as lithium-ion battery. Solid State Sciences 13: 1526-1530.

Yang, M., Javadi, A. & Gong, S. 2011a. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical 155: 357-360.

Yang, S-T., Chen, S., Chang, Y., Cao, A., Liu, Y. & Wang, H. 2011b. Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 359: 24-29.

Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y. & Chen, Y. 2009. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry 19: 2710-2714.

Yao, Y., Xu, F., Chen, M., Xu, Z. & Zhu, Z. 2010. Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology 101: 3040-3046.

Zhang, Z., Sun, Y., Cui, X. & Jiang, Z. 2011. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy 37: 811-815.

Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22: 3906-3924.

 

 

*Corresponding author; email: chia@ukm.my

 

 

 

previous