Sains Malaysiana 42(6)(2013):
819–826
Methylene
Blue Adsorption on Graphene Oxide
(Penjerapan Metilena Biru ke Atas Grafin Oksida)
Chin Hua Chia*, Nur Fazlinda Razali, Mohd
Shaiful Sajab, Sarani Zakaria
School of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Nay Ming Huang
Low Dimensional Materials Research Centre, Physics
Department, University of Malaya
50603 Kuala Lumpur, Malaysia
Hong Ngee Lim
Department of Chemistry, Faculty of Science, Universiti Putra
Malaysia
43400 UPM Serdang, Selangor, Malaysia
Received: 13 June 2012/Accepted: 13 September 2012
ABSTRACT
In this study, graphene oxide (GO), produced using the
simple Hummer’s method, was used as adsorbent to remove methylene blue (MB)
from aqueous solution. Characterizations using transmission electron microscope
(TEM)
and Fourier transform infrared (FTIR) spectroscopy were carried out on the GO before
the MB adsorption experiments. The adsorption kinetics and isotherm
studies were conducted under different conditions (pH = 3-7 and MB concentration =
100-400 mg/L) to examine the adsorption efficiency of the GO towards MB in
aqueous solution. The adsorption kinetics data were analyzed using different
kinetic models to investigate the adsorption behavior of MB on GO. The obtained results
showed that the maximum adsorption capacity of the GO towards MB can
achieve up to ~700 mg/g for the adsorption at 300 mg/L MB. The adsorption
kinetic data were found to fit pseudo-second order model as compared with
pseudo-first-order model. The intraparticle diffusion model suggested that the
adsorption process of GO towards MB was dominated by the
external mass transfer of MB molecules to the surface of GO.
Keywords: Adsorption isotherm; adsorption kinetics; intraparticle
diffusion; methylene blue
ABSTRAK
Dalam penyelidikan ini, grafin oksida (GO) yang disediakan
melalui kaedah Hummer telah digunakan sebagai bahan penjerap untuk
menyingkirkan metilena biru (MB) daripada larutan akues. Pencirian
menggunakan mikroskop elektron transmisi (TEM) dan spektroskopi
inframerah transmisi Fourier (FTIR) telah dilakukan ke atas GO sebelum eksperimen
penjerapan MB.
Data kinetik penjerapan telah dianalisis dengan menggunakan model kinetik yang
berlainan untuk mengkaji sifat penjerapan MB ke atas GO.
Keputusan yang diperoleh menunjukkan bahawa kapasiti penjerapan maksimum GO terhadap MB mencapai
~700 mg/g daripada larutan MB berkepekatan 300 mg/L. Data kinetik
penjerapan didapati berpadanan dengan model pseudo-tertib kedua. Model resapan
intrazarah mencadangkan bahawa proses penjerapan MB ke atas GO adalah
didominasi oleh pemindahan jisim luaran molekul MB ke permukaan GO.
Kata kunci: Isoterm penjerapan; kinetik
penjerapan; metilena biru; resapan intrazarah
REFERENCES
Annadurai, G., Juang, R-S. & Lee, D-J. 2002. Use of
cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal
of Hazardous Materials B92: 263-274.
Batzias, F.A. & Sidiras, D.K. 2007. Simulation of dye
adsorption by beech sawdust as affected by pH. Journal of Hazardous
Materials 141: 668-679.
Deng, X., Lu, L., Li, H. & Luo, F. 2010. The adsorption
properties of Pb(II) and Cd(II) on functionalized graphene prepared by
electrolysis method. Journal of Hazardous Materials 183: 923-930.
Dural, M.U., Cavas, L., Papageorgiou, S.K. & Katsaros, F.K.
2011. Methylene blue adsorption on activated carbon prepared from Posidonia
oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chemical
Engineering Journal 168: 77-85.
Gong, J-L., Wang, B., Zeng, G-M., Yang, C-P., Niu, C-G., Niu,
Q-Y., Zhou, W-J. & Liang, Y. 2009. Removal of cationic dyes from aqueous
solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal
of Hazardous Materials 164: 1517-1522.
Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for
sorption processes. Process Biochemistry 34: 451-465.
Hou, P-X., Xu, S-T., Ying, Z., Yang, Q-H., Liu, C. & Cheng,
H-M. 2003. Hydrogen adsorption/desorption behavior of multi-walled carbon
nanotubes with different diameters. Carbon 41: 2471-2476.
Hummers, W.S. & Offeman, R.E. 1958. Preparation of graphitic
oxide. Journal of American Chemical Society 80: 1339-1339.
Karagöz, S., Tay, T., Ucar, S. & Erdem, M. 2008. Activated
carbons from waste biomass by sulfuric acid activation and their use on
methylene blue adsorption. Bioresource Technology 99: 6214-6222.
Lagergren, S. 1898. About the theory of so-called adsorption of
soluble substance. Kungliga Svenska. Vetenskapsakademiens. Handlingar:
21: 1-39.
Lu, C. & Chou, H. 2006. Adsorption of zinc(II) from water with
purified carbon nanotubes. Chemical Engineering Science 61: 1138-1145.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y.,
Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect
in atomically thin carbon films. Science 306: 666-669.
Pasricha, R., Gupta, S. & Srivastava, A.K. 2009. A facile and
novel synthesis of Ag-graphene-based nanocomposites. Small 5: 2253-2259.
Ramesha, G.K., Vijayakumar, A., Muralidhara, H.B. & Sampath,
S. 2011. Graphene and graphene oxide as effective adsorbents towards anionic
and cationic dyes. Journal of Colloid and Interface Science 361: 270-277.
Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K.,
Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core
fibres for removal of methylene blue from aqueous solution. Bioresource
Technology 102: 7237-7243.
Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A. & Niu, L.
2010. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing Biosensors
and Bioelectronics 25: 1070-1074.
Shen, X., Wu, J. & Zhou, H. 2010. One-pot solvothermal
synthesis and magnetic properties of graphene-based magnetic nanocomposites. Journal
of Alloys and Compounds 506: 136-140.
Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. 2008. Adsorption of
basic dye on high-surface-area activated carbon prepared from coconut husk:
Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous
Materials 154: 337-346.
Wang, B., Park, J., Wang, C., Ahn, H. & Wang, G. 2010. Mn3O4
nanoparticles embedded into graphene nanosheets: Preparation, characterization,
and electrochemical properties for supercapacitors. Electrochimica Acta 55:
6812-6817.
Weber, W.J. & Morris, J.C. 1963. Kinetics of adsorption on
carbon from solution. Journal of Sanitary Engineering Division 89:
31-59.
Xue, X-Y., Ma, C-H., Cui, C-X. & Xing, L-L. 2011. High lithium
storage performance of α-Fe2O3/graphene nanocomposites as lithium-ion
battery. Solid State Sciences 13: 1526-1530.
Yang, M., Javadi, A. & Gong, S. 2011a. Sensitive
electrochemical immunosensor for the detection of cancer biomarker using
quantum dot functionalized graphene sheets as labels. Sensors and Actuators
B: Chemical 155: 357-360.
Yang, S-T., Chen, S., Chang, Y., Cao, A., Liu, Y. & Wang, H.
2011b. Removal of methylene blue from aqueous solution by graphene oxide. Journal
of Colloid and Interface Science 359: 24-29.
Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y. & Chen, Y.
2009. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for
controlled targeted drug carriers. Journal of Materials Chemistry 19:
2710-2714.
Yao, Y., Xu, F., Chen, M., Xu, Z. & Zhu, Z. 2010. Adsorption
behavior of methylene blue on carbon nanotubes. Bioresource Technology 101:
3040-3046.
Zhang, Z., Sun, Y., Cui, X. & Jiang, Z. 2011. A green and
facile synthesis of TiO2/graphene nanocomposites and their photocatalytic
activity for hydrogen evolution. International Journal of Hydrogen Energy 37:
811-815.
Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R.
& Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and
applications. Advanced Materials 22: 3906-3924.
*Corresponding author; email: chia@ukm.my
|